File size: 8,087 Bytes
be4456f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import streamlit as st
import plotly.express as px
import numpy as np
import plotly.graph_objects as go
from utilities_with_panel import channel_name_formating, load_authenticator, initialize_data
from sklearn.metrics import r2_score
from collections import OrderedDict
from classes import class_from_dict,class_to_dict
import pickle
import json
import pandas as pd
from utilities import (
    load_local_css,
    set_header,
    channel_name_formating,
)

for k, v in st.session_state.items():
    if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
        st.session_state[k] = v

def s_curve(x,K,b,a,x0):
    return K / (1 + b*np.exp(-a*(x-x0)))

def save_scenario(scenario_name):
    """

    Save the current scenario with the mentioned name in the session state

    

    Parameters

    ----------

    scenario_name

        Name of the scenario to be saved

    """
    if 'saved_scenarios' not in st.session_state:
        st.session_state = OrderedDict()
        
    #st.session_state['saved_scenarios'][scenario_name] = st.session_state['scenario'].save()
    st.session_state['saved_scenarios'][scenario_name] = class_to_dict(st.session_state['scenario'])
    st.session_state['scenario_input'] = ""
    print(type(st.session_state['saved_scenarios']))
    with open('../saved_scenarios.pkl', 'wb') as f:
        pickle.dump(st.session_state['saved_scenarios'],f)


def reset_curve_parameters():
    del st.session_state['K']
    del st.session_state['b']
    del st.session_state['a']
    del st.session_state['x0']
    
def update_response_curve():
    # st.session_state['rcs'][selected_channel_name]['K'] = st.session_state['K']
    # st.session_state['rcs'][selected_channel_name]['b'] = st.session_state['b']
    # st.session_state['rcs'][selected_channel_name]['a'] = st.session_state['a']
    # st.session_state['rcs'][selected_channel_name]['x0'] = st.session_state['x0']
    # rcs = st.session_state['rcs']
    _channel_class = st.session_state['scenario'].channels[selected_channel_name]
    _channel_class.update_response_curves({
                           'K'  : st.session_state['K'], 
                           'b'  : st.session_state['b'], 
                           'a'  : st.session_state['a'],
                           'x0' : st.session_state['x0']})
    

# authenticator = st.session_state.get('authenticator')
# if authenticator is None:
#     authenticator = load_authenticator()

# name, authentication_status, username = authenticator.login('Login', 'main')
# auth_status = st.session_state.get('authentication_status')

# if auth_status == True:
#     is_state_initiaized = st.session_state.get('initialized',False)
#     if not is_state_initiaized:
#         print("Scenario page state reloaded")

# Sprint4 - if used_response_metrics is not blank, then select one of the used_response_metrics, else target is revenue by default
st.set_page_config(layout='wide')
load_local_css('styles.css')
set_header()
def panel_fetch(file_selected):
    raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")

    if "Panel" in raw_data_mmm_df.columns:
        panel = list(set(raw_data_mmm_df["Panel"]))
    else:
        raw_data_mmm_df = None
        panel = None

    return panel

metrics_selected='Revenue'

file_selected = (
        f".\metrics_level_data\Overview_data_test_panel@#{metrics_selected}.xlsx"
    )
panel_list = panel_fetch(file_selected)


    
if "used_response_metrics" in st.session_state and st.session_state['used_response_metrics']!=[]:
    sel_target_col = st.selectbox("Select the response metric", st.session_state['used_response_metrics'])
    target_col = sel_target_col.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_")
else :
    sel_target_col = 'Total Approved Accounts - Revenue'
    target_col = 'total_approved_accounts_revenue'

st.subheader("Build response curves")


st.session_state['selected_markets']= st.selectbox(
        "Select Markets",
        ["Total Market"] + panel_list,
        index=0,
    )
initialize_data(target_col,st.session_state['selected_markets'])


    
channels_list = st.session_state['channels_list']
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'], format_func=channel_name_formating,on_change=reset_curve_parameters)

rcs = {}
for channel_name in channels_list:
    rcs[channel_name] = st.session_state['scenario'].channels[channel_name].response_curve_params
# rcs = st.session_state['rcs']


if 'K' not in st.session_state:
    st.session_state['K'] = rcs[selected_channel_name]['K']
if 'b' not in st.session_state:
    st.session_state['b'] = rcs[selected_channel_name]['b']
if 'a' not in st.session_state:
    st.session_state['a'] = rcs[selected_channel_name]['a']
if 'x0' not in st.session_state:
    st.session_state['x0'] = rcs[selected_channel_name]['x0']
    
x = st.session_state['actual_input_df'][selected_channel_name].values
y = st.session_state['actual_contribution_df'][selected_channel_name].values

power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)

# fig = px.scatter(x, s_curve(x/10**power,
#                             st.session_state['K'],
#                             st.session_state['b'],
#                             st.session_state['a'],
#                             st.session_state['x0']))

fig = px.scatter(x=x, y=y)
fig.add_trace(go.Scatter(x=sorted(x), y=s_curve(sorted(x)/10**power,st.session_state['K'],
                                    st.session_state['b'],
                                    st.session_state['a'],
                                    st.session_state['x0']),
                        line=dict(color='red')))

fig.update_layout(title_text="Response Curve",showlegend=False)
fig.update_annotations(font_size=10)
fig.update_xaxes(title='Spends')
fig.update_yaxes(title=sel_target_col)

st.plotly_chart(fig,use_container_width=True)

r2 = r2_score(y, s_curve(x / 10**power, 
                        st.session_state['K'],
                        st.session_state['b'],
                        st.session_state['a'],
                        st.session_state['x0']))

st.metric('R2',round(r2,2))
columns = st.columns(4)

with columns[0]:
    st.number_input('K',key='K',format="%0.5f")
with columns[1]:
    st.number_input('b',key='b',format="%0.5f")
with columns[2]:
    st.number_input('a',key='a',step=0.0001,format="%0.5f")
with columns[3]:
    st.number_input('x0',key='x0',format="%0.5f")
    

st.button('Update parameters',on_click=update_response_curve)
st.button('Reset parameters',on_click=reset_curve_parameters)
scenario_name = st.text_input('Scenario name', key='scenario_input',placeholder='Scenario name',label_visibility='collapsed')
st.button('Save', on_click=lambda  : save_scenario(scenario_name),disabled=len(st.session_state['scenario_input']) == 0)

file_name = st.text_input('rcs download file name', key='file_name_input',placeholder='file name',label_visibility='collapsed')
st.download_button(
                    label="Download response curves",
                    data=json.dumps(rcs),
                    file_name=f"{file_name}.json",
                    mime="application/json",
                    disabled= len(file_name) == 0,
                )


def s_curve_derivative(x, K, b, a, x0):
    # Derivative of the S-curve function
    return a * b * K * np.exp(-a * (x - x0)) / ((1 + b * np.exp(-a * (x - x0))) ** 2)

# Parameters of the S-curve
K = st.session_state['K']
b = st.session_state['b']
a = st.session_state['a']
x0 = st.session_state['x0']

# Optimized spend value obtained from the tool
optimized_spend = st.number_input('value of x')  # Replace this with your optimized spend value

# Calculate the slope at the optimized spend value
slope_at_optimized_spend = s_curve_derivative(optimized_spend, K, b, a, x0)

st.write("Slope ", slope_at_optimized_spend)