Spaces:
Running
Running
File size: 2,713 Bytes
5b74a4b 8a6097b 83e3ccb 5b74a4b f0d7e02 8a6097b 25fb027 e2984ff 25fb027 8a6097b 25fb027 a927d1d 393002d ee37b95 8a6097b 25fb027 393002d 25fb027 393002d 25fb027 393002d 5b74a4b 8a6097b cd0ec84 8a6097b cd0ec84 25fb027 8a6097b 25fb027 c58bd88 8c23bfa 25fb027 17cfe18 25fb027 a5ec736 b2c7d3a 5b74a4b ee37b95 8fe6fd5 5b74a4b ee37b95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import gradio as gr
from transformers import pipeline, AutoTokenizer
import numpy as np
# Load the pipeline for speech recognition and translation
pipe = pipeline(
"automatic-speech-recognition",
model="DrishtiSharma/whisper-large-v2-hausa",
tokenizer="DrishtiSharma/whisper-large-v2-hausa"
)
translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text")
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
# Define the function to translate speech
def translate_speech(audio_data):
print(f"Type of audio: {type(audio_data)}, Value of audio: {audio_data}") # Debug line
# Use the speech recognition pipeline to transcribe the audio
output = pipe(audio_data)
print(f"Output: {output}") # Print the output to see what it contains
# Check if the output contains 'text'
if 'text' in output:
transcription = output["text"]
else:
print("The output does not contain 'text'")
return
# Use the translation pipeline to translate the transcription
translated_text = translator(transcription, return_tensors="pt")
print(f"Translated text: {translated_text}") # Print the translated text to see what it contains
# Check if the translated text contains 'generated_token_ids'
if 'generated_token_ids' in translated_text[0]:
# Decode the tokens into text
translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids'])
else:
print("The translated text does not contain 'generated_token_ids'")
return
# Use the text-to-speech pipeline to synthesize the translated text
synthesised_speech = tts(translated_text_str)
print(f"Synthesised speech: {synthesised_speech}") # Print the synthesised speech to see what it contains
# Check if the synthesised speech contains 'audio'
if 'audio' in synthesised_speech:
synthesised_speech_data = synthesised_speech['audio']
else:
print("The synthesised speech does not contain 'audio'")
return
# Flatten the audio data
synthesised_speech_data = synthesised_speech_data.flatten()
# Scale the audio data to the range of int16 format
synthesised_speech = (synthesised_speech_data * 32767).astype(np.int16)
return 16000, synthesised_speech
# Define the Gradio interface
iface = gr.Interface(
fn=translate_speech,
inputs=gr.inputs.Audio(source="microphone"), # Change this line
outputs=gr.outputs.Audio(type="numpy"),
title="Hausa to English Translation",
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
)
iface.launch()
|