Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
|
|
|
|
|
|
3 |
|
4 |
# Define the Hugging Face Inference API URLs and headers
|
5 |
ASR_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-speech-recognition-hausa-audio-to-text"
|
@@ -14,8 +17,14 @@ def query(api_url, payload):
|
|
14 |
|
15 |
# Define the function to translate speech
|
16 |
def translate_speech(audio):
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Use the ASR pipeline to transcribe the audio
|
18 |
-
with open(
|
19 |
data = f.read()
|
20 |
response = requests.post(ASR_API_URL, headers=headers, data=data)
|
21 |
output = response.json()
|
@@ -34,7 +43,13 @@ def translate_speech(audio):
|
|
34 |
response = requests.post(TTS_API_URL, headers=headers, json={"inputs": translated_text})
|
35 |
audio_bytes = response.content
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Define the Gradio interface
|
40 |
iface = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
+
import soundfile as sf
|
4 |
+
import numpy as np
|
5 |
+
import tempfile
|
6 |
|
7 |
# Define the Hugging Face Inference API URLs and headers
|
8 |
ASR_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-speech-recognition-hausa-audio-to-text"
|
|
|
17 |
|
18 |
# Define the function to translate speech
|
19 |
def translate_speech(audio):
|
20 |
+
# audio is a tuple (np.ndarray, int), we need to save it as a file
|
21 |
+
audio_data, sample_rate = audio
|
22 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
23 |
+
sf.write(f, audio_data, sample_rate)
|
24 |
+
audio_file = f.name
|
25 |
+
|
26 |
# Use the ASR pipeline to transcribe the audio
|
27 |
+
with open(audio_file, "rb") as f:
|
28 |
data = f.read()
|
29 |
response = requests.post(ASR_API_URL, headers=headers, data=data)
|
30 |
output = response.json()
|
|
|
43 |
response = requests.post(TTS_API_URL, headers=headers, json={"inputs": translated_text})
|
44 |
audio_bytes = response.content
|
45 |
|
46 |
+
# Convert the audio bytes to numpy array
|
47 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
48 |
+
f.write(audio_bytes)
|
49 |
+
audio_file = f.name
|
50 |
+
audio_data, _ = sf.read(audio_file)
|
51 |
+
|
52 |
+
return audio_data
|
53 |
|
54 |
# Define the Gradio interface
|
55 |
iface = gr.Interface(
|