|
import gradio as gr |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
model_name = "unsloth/gemma-3-4b-it-unsloth-bnb-4bit" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
load_in_4bit=True, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
def generate_response(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens=256) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_response, |
|
inputs=gr.Textbox(lines=5, placeholder="Enter your prompt here..."), |
|
outputs=gr.Textbox(), |
|
title="Gemma 3-4B Inference", |
|
description="Run the unsloth/gemma-3-4b-it-unsloth-bnb-4bit model.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch(server_name="0.0.0.0", server_port=7860) |