import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Model and Tokenizer Setup model_name = "unsloth/gemma-3-4b-it-unsloth-bnb-4bit" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, load_in_4bit=True, device_map="auto", torch_dtype=torch.bfloat16, #important for speed. ) def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=256) # Adjust max_new_tokens as needed response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Gradio Interface iface = gr.Interface( fn=generate_response, inputs=gr.Textbox(lines=5, placeholder="Enter your prompt here..."), outputs=gr.Textbox(), title="Gemma 3-4B Inference", description="Run the unsloth/gemma-3-4b-it-unsloth-bnb-4bit model.", ) if __name__ == "__main__": iface.launch(server_name="0.0.0.0", server_port=7860) #important for spaces.