Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,047 Bytes
caa2d3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import time
import gradio as gr
import spaces
from threading import Thread
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import torch
MAX_INPUT_LIMIT = 3584
MODEL_NAME = "Azure99/blossom-v5-9b"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
GENERATE_CONFIG = dict(
max_new_tokens=1536,
temperature=0.5,
top_p=0.85,
top_k=50,
repetition_penalty=1.05
)
def get_input_ids(inst, history):
prefix = ("A chat between a human and an artificial intelligence bot. "
"The bot gives helpful, detailed, and polite answers to the human's questions.")
patterns = []
for conv in history:
patterns.append(f'\n|Human|: {conv[0]}\n|Bot|: ')
patterns.append(f'{conv[1]}')
patterns.append(f'\n|Human|: {inst}\n|Bot|: ')
patterns[0] = prefix + patterns[0]
input_ids = []
for i, pattern in enumerate(patterns):
input_ids += tokenizer.encode(pattern, add_special_tokens=(i == 0))
if i % 2 == 1:
input_ids += [tokenizer.eos_token_id]
return input_ids
@spaces.GPU
def chat(inst, history):
with torch.no_grad():
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
input_ids = get_input_ids(inst, history)
print(len(input_ids))
if len(input_ids) > MAX_INPUT_LIMIT:
yield "The input is too long, please clear the history."
return
generation_kwargs = dict(input_ids=torch.tensor([input_ids]).to(model.device), do_sample=True,
streamer=streamer, **GENERATE_CONFIG)
Thread(target=model.generate, kwargs=generation_kwargs).start()
# stop watch
start = time.time()
outputs = ""
for new_text in streamer:
outputs += new_text
yield outputs
total_time = time.time() - start
output_token_len = len(tokenizer.encode(outputs, add_special_tokens=False))
speed = output_token_len / total_time
print(f"Speed: {speed:.2f} tokens/s")
gr.ChatInterface(chat,
chatbot=gr.Chatbot(show_label=False, height=500, show_copy_button=True, render_markdown=True),
textbox=gr.Textbox(placeholder="", container=False, scale=7),
title="Blossom Demo",
description='Hello, I am Blossom, an open source conversational large language model.🌠'
'<a href="https://github.com/Azure99/BlossomLM">GitHub</a>',
theme="soft",
examples=["Hello", "What is MBTI", "用Python实现二分查找", "为switch写一篇小红书种草文案,带上emoji"],
clear_btn="🗑️Clear",
undo_btn="↩️Undo",
retry_btn="🔄Retry",
submit_btn="➡️Submit",
).queue().launch()
|