Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
from threading import Thread
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
|
7 |
+
import torch
|
8 |
+
|
9 |
+
MAX_INPUT_LIMIT = 3584
|
10 |
+
|
11 |
+
MODEL_NAME = "Azure99/blossom-v5-9b"
|
12 |
+
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
|
14 |
+
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
16 |
+
|
17 |
+
GENERATE_CONFIG = dict(
|
18 |
+
max_new_tokens=1536,
|
19 |
+
temperature=0.5,
|
20 |
+
top_p=0.85,
|
21 |
+
top_k=50,
|
22 |
+
repetition_penalty=1.05
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def get_input_ids(inst, history):
|
27 |
+
prefix = ("A chat between a human and an artificial intelligence bot. "
|
28 |
+
"The bot gives helpful, detailed, and polite answers to the human's questions.")
|
29 |
+
patterns = []
|
30 |
+
for conv in history:
|
31 |
+
patterns.append(f'\n|Human|: {conv[0]}\n|Bot|: ')
|
32 |
+
patterns.append(f'{conv[1]}')
|
33 |
+
patterns.append(f'\n|Human|: {inst}\n|Bot|: ')
|
34 |
+
patterns[0] = prefix + patterns[0]
|
35 |
+
|
36 |
+
input_ids = []
|
37 |
+
for i, pattern in enumerate(patterns):
|
38 |
+
input_ids += tokenizer.encode(pattern, add_special_tokens=(i == 0))
|
39 |
+
if i % 2 == 1:
|
40 |
+
input_ids += [tokenizer.eos_token_id]
|
41 |
+
return input_ids
|
42 |
+
|
43 |
+
|
44 |
+
@spaces.GPU
|
45 |
+
def chat(inst, history):
|
46 |
+
with torch.no_grad():
|
47 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
48 |
+
input_ids = get_input_ids(inst, history)
|
49 |
+
print(len(input_ids))
|
50 |
+
if len(input_ids) > MAX_INPUT_LIMIT:
|
51 |
+
yield "The input is too long, please clear the history."
|
52 |
+
return
|
53 |
+
generation_kwargs = dict(input_ids=torch.tensor([input_ids]).to(model.device), do_sample=True,
|
54 |
+
streamer=streamer, **GENERATE_CONFIG)
|
55 |
+
Thread(target=model.generate, kwargs=generation_kwargs).start()
|
56 |
+
|
57 |
+
# stop watch
|
58 |
+
start = time.time()
|
59 |
+
outputs = ""
|
60 |
+
for new_text in streamer:
|
61 |
+
outputs += new_text
|
62 |
+
yield outputs
|
63 |
+
total_time = time.time() - start
|
64 |
+
output_token_len = len(tokenizer.encode(outputs, add_special_tokens=False))
|
65 |
+
speed = output_token_len / total_time
|
66 |
+
print(f"Speed: {speed:.2f} tokens/s")
|
67 |
+
|
68 |
+
|
69 |
+
gr.ChatInterface(chat,
|
70 |
+
chatbot=gr.Chatbot(show_label=False, height=500, show_copy_button=True, render_markdown=True),
|
71 |
+
textbox=gr.Textbox(placeholder="", container=False, scale=7),
|
72 |
+
title="Blossom Demo",
|
73 |
+
description='Hello, I am Blossom, an open source conversational large language model.🌠'
|
74 |
+
'<a href="https://github.com/Azure99/BlossomLM">GitHub</a>',
|
75 |
+
theme="soft",
|
76 |
+
examples=["Hello", "What is MBTI", "用Python实现二分查找", "为switch写一篇小红书种草文案,带上emoji"],
|
77 |
+
clear_btn="🗑️Clear",
|
78 |
+
undo_btn="↩️Undo",
|
79 |
+
retry_btn="🔄Retry",
|
80 |
+
submit_btn="➡️Submit",
|
81 |
+
).queue().launch()
|