Spaces:
Sleeping
Sleeping
File size: 6,424 Bytes
a8c8bb7 05d9771 a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 44709bb a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f 4854317 a8c8bb7 1c4573f 4854317 a8c8bb7 1c4573f a8c8bb7 6bdeb04 a8c8bb7 1c4573f a8c8bb7 60e69dd a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import numpy as np
from scipy.io.wavfile import write
from scipy.signal import find_peaks
from scipy.fft import fft
from tqdm import tqdm
import time
import matplotlib.pyplot as plt
from scipy.io.wavfile import read
from scipy import signal
import gradio as gr
import reedsolo
import wavio
from scipy.signal import butter, lfilter
# ---------------Parameters--------------- #
low_frequency = 18000
high_frequency = 19000
bit_duration = 0.007
sample_rate = 44100
amplitude_scaling_factor = 10.0
# -----------------Record----------------- #
def record(audio):
try:
sr, data = audio
wavio.write("recorded.wav", data, sr)
main()
return f"Audio receive correctly"
except Exception as e:
return f"Error: {e}"
# -----------------Filter----------------- #
def butter_bandpass(lowcut, highcut, sr, order=5):
nyquist = 0.5 * sr
low = lowcut / nyquist
high = highcut / nyquist
coef = butter(order, [low, high], btype='band')
b = coef[0]
a = coef[1]
return b, a
def butter_bandpass_filter(data, lowcut, highcut, sr, order=5):
b, a = butter_bandpass(lowcut, highcut, sr, order=order)
y = lfilter(b, a, data)
return y
def main():
input_file = 'recorded.wav'
output_file = 'output_filtered_receiver.wav'
lowcut = 17500
highcut = 19500
sr, data = read(input_file)
filtered_data = butter_bandpass_filter(data, lowcut, highcut, sr)
write(output_file, sr, np.int16(filtered_data))
return "Filtered Audio Generated"
# -----------------Frame----------------- #
def calculate_snr(data, start, end, target_frequency):
segment = data[start:end]
spectrum = np.fft.fft(segment)
frequencies = np.fft.fftfreq(len(spectrum), 1 / sample_rate)
target_index = np.abs(frequencies - target_frequency).argmin()
amplitude = np.abs(spectrum[target_index])
noise_segment = data[100:1000 + len(segment)]
noise_spectrum = np.fft.fft(noise_segment)
noise_amplitude = np.abs(noise_spectrum[target_index])
snr = 10 * np.log10(amplitude / noise_amplitude)
return snr
def frame_analyse(filename):
sr, y = read(filename)
first_part_start = 0
first_part_end = len(y) // 2
second_part_start = len(y) // 2
second_part_end = len(y)
segment_length = 256
overlap_size = 128
f, t, sxx = signal.spectrogram(y, sr, nperseg=segment_length, noverlap=overlap_size)
plt.figure()
plt.pcolormesh(t, f, sxx, shading="gouraud")
plt.xlabel("Time [s]")
plt.ylabel("Frequency [Hz]")
plt.title("Spectrogram of the signal")
plt.show()
f0 = 18000
f_idx = np.argmin(np.abs(f - f0))
thresholds_start = calculate_snr(y, first_part_start, first_part_end, low_frequency)
thresholds_end = calculate_snr(y, second_part_start, second_part_end, high_frequency)
t_idx_start = np.argmax(sxx[f_idx] > thresholds_start)
t_start = t[t_idx_start]
t_idx_end = t_idx_start
while t_idx_end < len(t) and np.max(sxx[f_idx, t_idx_end:]) > thresholds_end:
t_idx_end += 1
t_end = t[t_idx_end]
return t_start, t_end
# -----------------Receiver----------------- #
def dominant_frequency(signal_value):
yf = fft(signal_value)
xf = np.linspace(0.0, sample_rate / 2.0, len(signal_value) // 2)
peaks, _ = find_peaks(np.abs(yf[0:len(signal_value) // 2]))
return xf[peaks[np.argmax(np.abs(yf[0:len(signal_value) // 2][peaks]))]]
def binary_to_text(binary):
try:
return ''.join(chr(int(binary[i:i + 8], 2)) for i in range(0, len(binary), 8))
except Exception as e:
return f"Except: {e}"
def decode_rs(binary_string, ecc_bytes):
byte_data = bytearray(int(binary_string[i:i + 8], 2) for i in range(0, len(binary_string), 8))
rs = reedsolo.RSCodec(ecc_bytes)
corrected_data_tuple = rs.decode(byte_data)
corrected_data = corrected_data_tuple[0]
corrected_data = corrected_data.rstrip(b'\x00')
corrected_binary_string = ''.join(format(byte, '08b') for byte in corrected_data)
return corrected_binary_string
def manchester_decoding(binary_string):
decoded_string = ''
for i in tqdm(range(0, len(binary_string), 2), desc="Decoding"):
if i + 1 < len(binary_string):
if binary_string[i] == '0' and binary_string[i + 1] == '1':
decoded_string += '0'
elif binary_string[i] == '1' and binary_string[i + 1] == '0':
decoded_string += '1'
else:
print("Error: Invalid Manchester Encoding")
return None
return decoded_string
def signal_to_binary_between_times(filename):
start_time, end_time = frame_analyse(filename)
sr, data = read(filename)
start_sample = int((start_time - 0.007) * sr)
end_sample = int((end_time - 0.007) * sr)
binary_string = ''
start_analyse_time = time.time()
for i in tqdm(range(start_sample, end_sample, int(sr * bit_duration))):
signal_value = data[i:i + int(sr * bit_duration)]
frequency = dominant_frequency(signal_value)
if np.abs(frequency - low_frequency) < np.abs(frequency - high_frequency):
binary_string += '0'
else:
binary_string += '1'
index_start = binary_string.find("1000001")
substrings = ["0111110", "011110"]
index_end = -1
for substring in substrings:
index = binary_string.find(substring)
if index != -1:
index_end = index
break
print("Binary String:", binary_string)
binary_string_decoded = manchester_decoding(binary_string[index_start + 7:index_end])
decoded_binary_string = decode_rs(binary_string_decoded, 20)
return decoded_binary_string
def receive():
try:
audio_receive = signal_to_binary_between_times('output_filtered_receiver.wav')
return binary_to_text(audio_receive)
except Exception as e:
return f"Error: {e}"
# -----------------Interface----------------- #
with gr.Blocks() as demo:
input_audio = gr.Audio(sources=["upload"])
output_text = gr.Textbox(label="Record Sound")
btn_convert = gr.Button(value="Convert")
btn_convert.click(fn=record, inputs=input_audio, outputs=output_text)
output_convert = gr.Textbox(label="Received Text")
btn_receive = gr.Button(value="Received Text")
btn_receive.click(fn=receive, outputs=output_convert)
demo.launch() |