Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +214 -0
- packages.txt +1 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import sounddevice as sd
|
3 |
+
from scipy.io.wavfile import read, write
|
4 |
+
from scipy.signal import find_peaks
|
5 |
+
from scipy.fft import fft
|
6 |
+
from tqdm import tqdm
|
7 |
+
import time
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from scipy.io.wavfile import read
|
10 |
+
from scipy import signal
|
11 |
+
import gradio as gr
|
12 |
+
import reedsolo
|
13 |
+
import wavio
|
14 |
+
from scipy.signal import butter, lfilter
|
15 |
+
|
16 |
+
low_frequency = 18000
|
17 |
+
high_frequency = 19000
|
18 |
+
bit_duration = 0.007
|
19 |
+
sample_rate = 44100
|
20 |
+
amplitude_scaling_factor = 10.0
|
21 |
+
|
22 |
+
#-----------------Record-----------------#
|
23 |
+
|
24 |
+
def record(audio):
|
25 |
+
try:
|
26 |
+
sr, data = audio
|
27 |
+
wavio.write("recorded.wav", data, sr)
|
28 |
+
main()
|
29 |
+
return f"Audio receive correctly"
|
30 |
+
except Exception as e:
|
31 |
+
return f"Error: {e}"
|
32 |
+
|
33 |
+
#-----------------Filter-----------------#
|
34 |
+
|
35 |
+
def butter_bandpass(lowcut, highcut, fs, order=5):
|
36 |
+
nyquist = 0.5 * fs
|
37 |
+
low = lowcut / nyquist
|
38 |
+
high = highcut / nyquist
|
39 |
+
coef = butter(order, [low, high], btype='band')
|
40 |
+
b = coef[0]
|
41 |
+
a = coef[1]
|
42 |
+
return b, a
|
43 |
+
|
44 |
+
def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
|
45 |
+
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
|
46 |
+
y = lfilter(b, a, data)
|
47 |
+
return y
|
48 |
+
|
49 |
+
def main():
|
50 |
+
input_file = 'recorded.wav'
|
51 |
+
output_file = 'output_filtered_receiver.wav'
|
52 |
+
lowcut = 18000
|
53 |
+
highcut = 19000
|
54 |
+
|
55 |
+
fs, data = read(input_file)
|
56 |
+
|
57 |
+
filtered_data = butter_bandpass_filter(data, lowcut, highcut, 44100)
|
58 |
+
write(output_file, fs, np.int16(filtered_data))
|
59 |
+
return "Filtered Audio Generated"
|
60 |
+
|
61 |
+
#-----------------Frame-----------------#
|
62 |
+
|
63 |
+
def calculate_snr(data, start, end, target_frequency, sample_rate):
|
64 |
+
|
65 |
+
segment = data[start:end]
|
66 |
+
spectrum = np.fft.fft(segment)
|
67 |
+
frequencies = np.fft.fftfreq(len(spectrum), 1 / sample_rate)
|
68 |
+
target_index = np.abs(frequencies - target_frequency).argmin()
|
69 |
+
amplitude = np.abs(spectrum[target_index])
|
70 |
+
|
71 |
+
noise_segment = data[100:1000+len(segment)]
|
72 |
+
noise_spectrum = np.fft.fft(noise_segment)
|
73 |
+
noise_amplitude = np.abs(noise_spectrum[target_index])
|
74 |
+
|
75 |
+
snr = 10 * np.log10(amplitude / noise_amplitude)
|
76 |
+
return snr
|
77 |
+
|
78 |
+
filename = 'output_filtered_receiver.wav'
|
79 |
+
|
80 |
+
def frame_analyse(filename):
|
81 |
+
fs, y = read(filename)
|
82 |
+
|
83 |
+
first_part_start = 0
|
84 |
+
first_part_end = len(y) // 2
|
85 |
+
|
86 |
+
second_part_start = len(y) // 2
|
87 |
+
second_part_end = len(y)
|
88 |
+
|
89 |
+
nperseg = 256
|
90 |
+
noverlap = 128
|
91 |
+
|
92 |
+
f, t, Sxx = signal.spectrogram(y, fs, nperseg=nperseg, noverlap=noverlap)
|
93 |
+
|
94 |
+
plt.figure()
|
95 |
+
plt.pcolormesh(t, f, Sxx, shading="gouraud")
|
96 |
+
plt.xlabel("Time [s]")
|
97 |
+
plt.ylabel("Frequency [Hz]")
|
98 |
+
plt.title("Spectrogram of the signal")
|
99 |
+
plt.show()
|
100 |
+
|
101 |
+
f0 = 18000
|
102 |
+
|
103 |
+
f_idx = np.argmin(np.abs(f - f0))
|
104 |
+
|
105 |
+
thresholds_start = calculate_snr(y, first_part_start, first_part_end, low_frequency, sample_rate)
|
106 |
+
thresholds_end = calculate_snr(y, second_part_start, second_part_end, high_frequency, sample_rate)
|
107 |
+
|
108 |
+
t_idx_start = np.argmax(Sxx[f_idx] > thresholds_start)
|
109 |
+
|
110 |
+
t_start = t[t_idx_start]
|
111 |
+
|
112 |
+
t_idx_end = t_idx_start
|
113 |
+
while t_idx_end < len(t) and np.max(Sxx[f_idx, t_idx_end:]) > thresholds_end:
|
114 |
+
t_idx_end += 1
|
115 |
+
|
116 |
+
t_end = t[t_idx_end]
|
117 |
+
|
118 |
+
return t_start, t_end
|
119 |
+
|
120 |
+
#-----------------Receiver-----------------#
|
121 |
+
|
122 |
+
def dominant_frequency(signal, sample_rate=44100):
|
123 |
+
yf = fft(signal)
|
124 |
+
xf = np.linspace(0.0, sample_rate / 2.0, len(signal) // 2)
|
125 |
+
peaks, _ = find_peaks(np.abs(yf[0:len(signal) // 2]))
|
126 |
+
return xf[peaks[np.argmax(np.abs(yf[0:len(signal) // 2][peaks]))]]
|
127 |
+
|
128 |
+
def binary_to_text(binary):
|
129 |
+
try:
|
130 |
+
return ''.join(chr(int(binary[i:i + 8], 2)) for i in range(0, len(binary), 8))
|
131 |
+
except Exception as e:
|
132 |
+
return f"Except: {e}"
|
133 |
+
|
134 |
+
def decode_rs(binary_string, ecc_bytes):
|
135 |
+
byte_data = bytearray(int(binary_string[i:i+8], 2) for i in range(0, len(binary_string), 8))
|
136 |
+
rs = reedsolo.RSCodec(ecc_bytes)
|
137 |
+
corrected_data_tuple = rs.decode(byte_data)
|
138 |
+
corrected_data = corrected_data_tuple[0]
|
139 |
+
|
140 |
+
corrected_data = corrected_data.rstrip(b'\x00')
|
141 |
+
|
142 |
+
corrected_binary_string = ''.join(format(byte, '08b') for byte in corrected_data)
|
143 |
+
|
144 |
+
return corrected_binary_string
|
145 |
+
|
146 |
+
def manchester_decoding(binary_string):
|
147 |
+
decoded_string = ''
|
148 |
+
for i in tqdm(range(0, len(binary_string), 2), desc="Decoding"):
|
149 |
+
if i + 1 < len(binary_string):
|
150 |
+
if binary_string[i] == '0' and binary_string[i + 1] == '1':
|
151 |
+
decoded_string += '0'
|
152 |
+
elif binary_string[i] == '1' and binary_string[i + 1] == '0':
|
153 |
+
decoded_string += '1'
|
154 |
+
else:
|
155 |
+
print("Error: Invalid Manchester Encoding")
|
156 |
+
return None
|
157 |
+
return decoded_string
|
158 |
+
|
159 |
+
def signal_to_binary_between_times(filename):
|
160 |
+
start_time, end_time = frame_analyse(filename)
|
161 |
+
|
162 |
+
sample_rate, data = read(filename)
|
163 |
+
|
164 |
+
start_sample = int((start_time - 0.007) * sample_rate)
|
165 |
+
end_sample = int((end_time - 0.007) * sample_rate)
|
166 |
+
binary_string = ''
|
167 |
+
|
168 |
+
start_analyse_time = time.time()
|
169 |
+
|
170 |
+
for i in tqdm(range(start_sample, end_sample, int(sample_rate * bit_duration))):
|
171 |
+
signal = data[i:i + int(sample_rate * bit_duration)]
|
172 |
+
frequency = dominant_frequency(signal, sample_rate)
|
173 |
+
if np.abs(frequency - low_frequency) < np.abs(frequency - high_frequency):
|
174 |
+
binary_string += '0'
|
175 |
+
else:
|
176 |
+
binary_string += '1'
|
177 |
+
|
178 |
+
index_start = binary_string.find("1000001")
|
179 |
+
substrings = ["0111110", "011110"]
|
180 |
+
index_end = -1
|
181 |
+
|
182 |
+
for substring in substrings:
|
183 |
+
index = binary_string.find(substring)
|
184 |
+
if index != -1:
|
185 |
+
index_end = index
|
186 |
+
break
|
187 |
+
|
188 |
+
print("Binary String:", binary_string)
|
189 |
+
binary_string_decoded = manchester_decoding(binary_string[index_start+7:index_end])
|
190 |
+
|
191 |
+
#decoded_binary_string = decode_rs(binary_string_decoded, 20)
|
192 |
+
|
193 |
+
return binary_string_decoded
|
194 |
+
|
195 |
+
#-----------------Interface-----------------#
|
196 |
+
|
197 |
+
def receive():
|
198 |
+
try:
|
199 |
+
audio_receive = signal_to_binary_between_times('recorded.wav')
|
200 |
+
return binary_to_text(audio_receive)
|
201 |
+
except Exception as e:
|
202 |
+
return f"Error: {e}"
|
203 |
+
|
204 |
+
with gr.Blocks() as demo:
|
205 |
+
input_audio = gr.Audio(sources=["upload"])
|
206 |
+
output = gr.Textbox(label="Record Sound")
|
207 |
+
btn = gr.Button(value="Send")
|
208 |
+
btn.click(fn=record, inputs=input_audio, outputs=output)
|
209 |
+
|
210 |
+
output_third = gr.Textbox(label="Received Text")
|
211 |
+
btn_3 = gr.Button(value="Play WAV")
|
212 |
+
btn_3.click(fn=receive, outputs=output_third)
|
213 |
+
|
214 |
+
demo.launch()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
libportaudio2
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy~=1.24.3
|
2 |
+
sounddevice~=0.4.6
|
3 |
+
gradio~=4.8.0
|
4 |
+
reedsolo~=1.7.0
|
5 |
+
scipy~=1.11.4
|
6 |
+
tqdm~=4.66.1
|
7 |
+
ipython~=8.12.2
|
8 |
+
matplotlib~=3.5.1
|
9 |
+
wavio~=0.0.4
|