Spaces:
Running
on
Zero
Running
on
Zero
from functools import wraps | |
from packaging import version | |
from collections import namedtuple | |
import os | |
import torch | |
from torch import nn, einsum | |
import torch.nn.functional as F | |
from einops import rearrange, reduce | |
# constants | |
FlashAttentionConfig = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) | |
# helpers | |
def exists(val): | |
return val is not None | |
def default(v, d): | |
return v if exists(v) else d | |
def once(fn): | |
called = False | |
def inner(x): | |
nonlocal called | |
if called: | |
return | |
called = True | |
return fn(x) | |
return inner | |
print_once = once(print) | |
# main class | |
class Attend(nn.Module): | |
def __init__( | |
self, | |
dropout = 0., | |
flash = False, | |
scale = None | |
): | |
super().__init__() | |
self.scale = scale | |
self.dropout = dropout | |
self.attn_dropout = nn.Dropout(dropout) | |
self.flash = flash | |
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' | |
# determine efficient attention configs for cuda and cpu | |
self.cpu_config = FlashAttentionConfig(True, True, True) | |
self.cuda_config = None | |
if not torch.cuda.is_available() or not flash: | |
return | |
device_properties = torch.cuda.get_device_properties(torch.device('cuda')) | |
device_version = version.parse(f'{device_properties.major}.{device_properties.minor}') | |
if device_version >= version.parse('8.0'): | |
if os.name == 'nt': | |
print_once('Windows OS detected, using math or mem efficient attention if input tensor is on cuda') | |
self.cuda_config = FlashAttentionConfig(False, True, True) | |
else: | |
print_once('GPU Compute Capability equal or above 8.0, using flash attention if input tensor is on cuda') | |
self.cuda_config = FlashAttentionConfig(True, False, False) | |
else: | |
print_once('GPU Compute Capability below 8.0, using math or mem efficient attention if input tensor is on cuda') | |
self.cuda_config = FlashAttentionConfig(False, True, True) | |
def flash_attn(self, q, k, v): | |
_, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device | |
if exists(self.scale): | |
default_scale = q.shape[-1] ** -0.5 | |
q = q * (self.scale / default_scale) | |
# Check if there is a compatible device for flash attention | |
config = self.cuda_config if is_cuda else self.cpu_config | |
# pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale | |
with torch.backends.cuda.sdp_kernel(**config._asdict()): | |
out = F.scaled_dot_product_attention( | |
q, k, v, | |
dropout_p = self.dropout if self.training else 0. | |
) | |
return out | |
def forward(self, q, k, v): | |
""" | |
einstein notation | |
b - batch | |
h - heads | |
n, i, j - sequence length (base sequence length, source, target) | |
d - feature dimension | |
""" | |
q_len, k_len, device = q.shape[-2], k.shape[-2], q.device | |
scale = default(self.scale, q.shape[-1] ** -0.5) | |
if self.flash: | |
return self.flash_attn(q, k, v) | |
# similarity | |
sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale | |
# attention | |
attn = sim.softmax(dim=-1) | |
attn = self.attn_dropout(attn) | |
# aggregate values | |
out = einsum(f"b h i j, b h j d -> b h i d", attn, v) | |
return out | |