Spaces:
Running
on
Zero
Running
on
Zero
feat!: add configuration for inference process
Browse files- models/bs_roformer/__init__.py +2 -0
- models/bs_roformer/__pycache__/__init__.cpython-311.pyc +0 -0
- models/bs_roformer/__pycache__/attend.cpython-311.pyc +0 -0
- models/bs_roformer/__pycache__/bs_roformer.cpython-311.pyc +0 -0
- models/bs_roformer/__pycache__/mel_band_roformer.cpython-311.pyc +0 -0
- models/bs_roformer/attend.py +126 -0
- models/bs_roformer/bs_roformer.py +590 -0
- models/bs_roformer/mel_band_roformer.py +637 -0
- models/demucs4ht.py +713 -0
- models/scnet/__init__.py +1 -0
- models/scnet/__pycache__/__init__.cpython-311.pyc +0 -0
- models/scnet/__pycache__/scnet.cpython-311.pyc +0 -0
- models/scnet/__pycache__/separation.cpython-311.pyc +0 -0
- models/scnet/scnet.py +373 -0
- models/scnet/separation.py +113 -0
models/bs_roformer/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from models.bs_roformer.bs_roformer import BSRoformer
|
2 |
+
from models.bs_roformer.mel_band_roformer import MelBandRoformer
|
models/bs_roformer/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (347 Bytes). View file
|
|
models/bs_roformer/__pycache__/attend.cpython-311.pyc
ADDED
Binary file (6.14 kB). View file
|
|
models/bs_roformer/__pycache__/bs_roformer.cpython-311.pyc
ADDED
Binary file (25.4 kB). View file
|
|
models/bs_roformer/__pycache__/mel_band_roformer.cpython-311.pyc
ADDED
Binary file (26.9 kB). View file
|
|
models/bs_roformer/attend.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import wraps
|
2 |
+
from packaging import version
|
3 |
+
from collections import namedtuple
|
4 |
+
|
5 |
+
import os
|
6 |
+
import torch
|
7 |
+
from torch import nn, einsum
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from einops import rearrange, reduce
|
11 |
+
|
12 |
+
# constants
|
13 |
+
|
14 |
+
FlashAttentionConfig = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
|
15 |
+
|
16 |
+
# helpers
|
17 |
+
|
18 |
+
def exists(val):
|
19 |
+
return val is not None
|
20 |
+
|
21 |
+
def default(v, d):
|
22 |
+
return v if exists(v) else d
|
23 |
+
|
24 |
+
def once(fn):
|
25 |
+
called = False
|
26 |
+
@wraps(fn)
|
27 |
+
def inner(x):
|
28 |
+
nonlocal called
|
29 |
+
if called:
|
30 |
+
return
|
31 |
+
called = True
|
32 |
+
return fn(x)
|
33 |
+
return inner
|
34 |
+
|
35 |
+
print_once = once(print)
|
36 |
+
|
37 |
+
# main class
|
38 |
+
|
39 |
+
class Attend(nn.Module):
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
dropout = 0.,
|
43 |
+
flash = False,
|
44 |
+
scale = None
|
45 |
+
):
|
46 |
+
super().__init__()
|
47 |
+
self.scale = scale
|
48 |
+
self.dropout = dropout
|
49 |
+
self.attn_dropout = nn.Dropout(dropout)
|
50 |
+
|
51 |
+
self.flash = flash
|
52 |
+
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
|
53 |
+
|
54 |
+
# determine efficient attention configs for cuda and cpu
|
55 |
+
|
56 |
+
self.cpu_config = FlashAttentionConfig(True, True, True)
|
57 |
+
self.cuda_config = None
|
58 |
+
|
59 |
+
if not torch.cuda.is_available() or not flash:
|
60 |
+
return
|
61 |
+
|
62 |
+
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
|
63 |
+
device_version = version.parse(f'{device_properties.major}.{device_properties.minor}')
|
64 |
+
|
65 |
+
if device_version >= version.parse('8.0'):
|
66 |
+
if os.name == 'nt':
|
67 |
+
print_once('Windows OS detected, using math or mem efficient attention if input tensor is on cuda')
|
68 |
+
self.cuda_config = FlashAttentionConfig(False, True, True)
|
69 |
+
else:
|
70 |
+
print_once('GPU Compute Capability equal or above 8.0, using flash attention if input tensor is on cuda')
|
71 |
+
self.cuda_config = FlashAttentionConfig(True, False, False)
|
72 |
+
else:
|
73 |
+
print_once('GPU Compute Capability below 8.0, using math or mem efficient attention if input tensor is on cuda')
|
74 |
+
self.cuda_config = FlashAttentionConfig(False, True, True)
|
75 |
+
|
76 |
+
def flash_attn(self, q, k, v):
|
77 |
+
_, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
|
78 |
+
|
79 |
+
if exists(self.scale):
|
80 |
+
default_scale = q.shape[-1] ** -0.5
|
81 |
+
q = q * (self.scale / default_scale)
|
82 |
+
|
83 |
+
# Check if there is a compatible device for flash attention
|
84 |
+
|
85 |
+
config = self.cuda_config if is_cuda else self.cpu_config
|
86 |
+
|
87 |
+
# pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale
|
88 |
+
|
89 |
+
with torch.backends.cuda.sdp_kernel(**config._asdict()):
|
90 |
+
out = F.scaled_dot_product_attention(
|
91 |
+
q, k, v,
|
92 |
+
dropout_p = self.dropout if self.training else 0.
|
93 |
+
)
|
94 |
+
|
95 |
+
return out
|
96 |
+
|
97 |
+
def forward(self, q, k, v):
|
98 |
+
"""
|
99 |
+
einstein notation
|
100 |
+
b - batch
|
101 |
+
h - heads
|
102 |
+
n, i, j - sequence length (base sequence length, source, target)
|
103 |
+
d - feature dimension
|
104 |
+
"""
|
105 |
+
|
106 |
+
q_len, k_len, device = q.shape[-2], k.shape[-2], q.device
|
107 |
+
|
108 |
+
scale = default(self.scale, q.shape[-1] ** -0.5)
|
109 |
+
|
110 |
+
if self.flash:
|
111 |
+
return self.flash_attn(q, k, v)
|
112 |
+
|
113 |
+
# similarity
|
114 |
+
|
115 |
+
sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale
|
116 |
+
|
117 |
+
# attention
|
118 |
+
|
119 |
+
attn = sim.softmax(dim=-1)
|
120 |
+
attn = self.attn_dropout(attn)
|
121 |
+
|
122 |
+
# aggregate values
|
123 |
+
|
124 |
+
out = einsum(f"b h i j, b h j d -> b h i d", attn, v)
|
125 |
+
|
126 |
+
return out
|
models/bs_roformer/bs_roformer.py
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn, einsum, Tensor
|
5 |
+
from torch.nn import Module, ModuleList
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from models.bs_roformer.attend import Attend
|
9 |
+
|
10 |
+
from beartype.typing import Tuple, Optional, List, Callable
|
11 |
+
from beartype import beartype
|
12 |
+
|
13 |
+
from rotary_embedding_torch import RotaryEmbedding
|
14 |
+
|
15 |
+
from einops import rearrange, pack, unpack
|
16 |
+
from einops.layers.torch import Rearrange
|
17 |
+
|
18 |
+
# helper functions
|
19 |
+
|
20 |
+
def exists(val):
|
21 |
+
return val is not None
|
22 |
+
|
23 |
+
|
24 |
+
def default(v, d):
|
25 |
+
return v if exists(v) else d
|
26 |
+
|
27 |
+
|
28 |
+
def pack_one(t, pattern):
|
29 |
+
return pack([t], pattern)
|
30 |
+
|
31 |
+
|
32 |
+
def unpack_one(t, ps, pattern):
|
33 |
+
return unpack(t, ps, pattern)[0]
|
34 |
+
|
35 |
+
|
36 |
+
# norm
|
37 |
+
|
38 |
+
def l2norm(t):
|
39 |
+
return F.normalize(t, dim = -1, p = 2)
|
40 |
+
|
41 |
+
|
42 |
+
class RMSNorm(Module):
|
43 |
+
def __init__(self, dim):
|
44 |
+
super().__init__()
|
45 |
+
self.scale = dim ** 0.5
|
46 |
+
self.gamma = nn.Parameter(torch.ones(dim))
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
return F.normalize(x, dim=-1) * self.scale * self.gamma
|
50 |
+
|
51 |
+
|
52 |
+
# attention
|
53 |
+
|
54 |
+
class FeedForward(Module):
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
dim,
|
58 |
+
mult=4,
|
59 |
+
dropout=0.
|
60 |
+
):
|
61 |
+
super().__init__()
|
62 |
+
dim_inner = int(dim * mult)
|
63 |
+
self.net = nn.Sequential(
|
64 |
+
RMSNorm(dim),
|
65 |
+
nn.Linear(dim, dim_inner),
|
66 |
+
nn.GELU(),
|
67 |
+
nn.Dropout(dropout),
|
68 |
+
nn.Linear(dim_inner, dim),
|
69 |
+
nn.Dropout(dropout)
|
70 |
+
)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
return self.net(x)
|
74 |
+
|
75 |
+
|
76 |
+
class Attention(Module):
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
dim,
|
80 |
+
heads=8,
|
81 |
+
dim_head=64,
|
82 |
+
dropout=0.,
|
83 |
+
rotary_embed=None,
|
84 |
+
flash=True
|
85 |
+
):
|
86 |
+
super().__init__()
|
87 |
+
self.heads = heads
|
88 |
+
self.scale = dim_head ** -0.5
|
89 |
+
dim_inner = heads * dim_head
|
90 |
+
|
91 |
+
self.rotary_embed = rotary_embed
|
92 |
+
|
93 |
+
self.attend = Attend(flash=flash, dropout=dropout)
|
94 |
+
|
95 |
+
self.norm = RMSNorm(dim)
|
96 |
+
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False)
|
97 |
+
|
98 |
+
self.to_gates = nn.Linear(dim, heads)
|
99 |
+
|
100 |
+
self.to_out = nn.Sequential(
|
101 |
+
nn.Linear(dim_inner, dim, bias=False),
|
102 |
+
nn.Dropout(dropout)
|
103 |
+
)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
x = self.norm(x)
|
107 |
+
|
108 |
+
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)
|
109 |
+
|
110 |
+
if exists(self.rotary_embed):
|
111 |
+
q = self.rotary_embed.rotate_queries_or_keys(q)
|
112 |
+
k = self.rotary_embed.rotate_queries_or_keys(k)
|
113 |
+
|
114 |
+
out = self.attend(q, k, v)
|
115 |
+
|
116 |
+
gates = self.to_gates(x)
|
117 |
+
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()
|
118 |
+
|
119 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
120 |
+
return self.to_out(out)
|
121 |
+
|
122 |
+
|
123 |
+
class LinearAttention(Module):
|
124 |
+
"""
|
125 |
+
this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al.
|
126 |
+
"""
|
127 |
+
|
128 |
+
@beartype
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
*,
|
132 |
+
dim,
|
133 |
+
dim_head=32,
|
134 |
+
heads=8,
|
135 |
+
scale=8,
|
136 |
+
flash=False,
|
137 |
+
dropout=0.
|
138 |
+
):
|
139 |
+
super().__init__()
|
140 |
+
dim_inner = dim_head * heads
|
141 |
+
self.norm = RMSNorm(dim)
|
142 |
+
|
143 |
+
self.to_qkv = nn.Sequential(
|
144 |
+
nn.Linear(dim, dim_inner * 3, bias=False),
|
145 |
+
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
|
146 |
+
)
|
147 |
+
|
148 |
+
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
|
149 |
+
|
150 |
+
self.attend = Attend(
|
151 |
+
scale=scale,
|
152 |
+
dropout=dropout,
|
153 |
+
flash=flash
|
154 |
+
)
|
155 |
+
|
156 |
+
self.to_out = nn.Sequential(
|
157 |
+
Rearrange('b h d n -> b n (h d)'),
|
158 |
+
nn.Linear(dim_inner, dim, bias=False)
|
159 |
+
)
|
160 |
+
|
161 |
+
def forward(
|
162 |
+
self,
|
163 |
+
x
|
164 |
+
):
|
165 |
+
x = self.norm(x)
|
166 |
+
|
167 |
+
q, k, v = self.to_qkv(x)
|
168 |
+
|
169 |
+
q, k = map(l2norm, (q, k))
|
170 |
+
q = q * self.temperature.exp()
|
171 |
+
|
172 |
+
out = self.attend(q, k, v)
|
173 |
+
|
174 |
+
return self.to_out(out)
|
175 |
+
|
176 |
+
|
177 |
+
class Transformer(Module):
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
*,
|
181 |
+
dim,
|
182 |
+
depth,
|
183 |
+
dim_head=64,
|
184 |
+
heads=8,
|
185 |
+
attn_dropout=0.,
|
186 |
+
ff_dropout=0.,
|
187 |
+
ff_mult=4,
|
188 |
+
norm_output=True,
|
189 |
+
rotary_embed=None,
|
190 |
+
flash_attn=True,
|
191 |
+
linear_attn=False
|
192 |
+
):
|
193 |
+
super().__init__()
|
194 |
+
self.layers = ModuleList([])
|
195 |
+
|
196 |
+
for _ in range(depth):
|
197 |
+
if linear_attn:
|
198 |
+
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn)
|
199 |
+
else:
|
200 |
+
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout,
|
201 |
+
rotary_embed=rotary_embed, flash=flash_attn)
|
202 |
+
|
203 |
+
self.layers.append(ModuleList([
|
204 |
+
attn,
|
205 |
+
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
|
206 |
+
]))
|
207 |
+
|
208 |
+
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
|
209 |
+
|
210 |
+
def forward(self, x):
|
211 |
+
|
212 |
+
for attn, ff in self.layers:
|
213 |
+
x = attn(x) + x
|
214 |
+
x = ff(x) + x
|
215 |
+
|
216 |
+
return self.norm(x)
|
217 |
+
|
218 |
+
|
219 |
+
# bandsplit module
|
220 |
+
|
221 |
+
class BandSplit(Module):
|
222 |
+
@beartype
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
dim,
|
226 |
+
dim_inputs: Tuple[int, ...]
|
227 |
+
):
|
228 |
+
super().__init__()
|
229 |
+
self.dim_inputs = dim_inputs
|
230 |
+
self.to_features = ModuleList([])
|
231 |
+
|
232 |
+
for dim_in in dim_inputs:
|
233 |
+
net = nn.Sequential(
|
234 |
+
RMSNorm(dim_in),
|
235 |
+
nn.Linear(dim_in, dim)
|
236 |
+
)
|
237 |
+
|
238 |
+
self.to_features.append(net)
|
239 |
+
|
240 |
+
def forward(self, x):
|
241 |
+
x = x.split(self.dim_inputs, dim=-1)
|
242 |
+
|
243 |
+
outs = []
|
244 |
+
for split_input, to_feature in zip(x, self.to_features):
|
245 |
+
split_output = to_feature(split_input)
|
246 |
+
outs.append(split_output)
|
247 |
+
|
248 |
+
return torch.stack(outs, dim=-2)
|
249 |
+
|
250 |
+
|
251 |
+
def MLP(
|
252 |
+
dim_in,
|
253 |
+
dim_out,
|
254 |
+
dim_hidden=None,
|
255 |
+
depth=1,
|
256 |
+
activation=nn.Tanh
|
257 |
+
):
|
258 |
+
dim_hidden = default(dim_hidden, dim_in)
|
259 |
+
|
260 |
+
net = []
|
261 |
+
dims = (dim_in, *((dim_hidden,) * (depth - 1)), dim_out)
|
262 |
+
|
263 |
+
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])):
|
264 |
+
is_last = ind == (len(dims) - 2)
|
265 |
+
|
266 |
+
net.append(nn.Linear(layer_dim_in, layer_dim_out))
|
267 |
+
|
268 |
+
if is_last:
|
269 |
+
continue
|
270 |
+
|
271 |
+
net.append(activation())
|
272 |
+
|
273 |
+
return nn.Sequential(*net)
|
274 |
+
|
275 |
+
|
276 |
+
class MaskEstimator(Module):
|
277 |
+
@beartype
|
278 |
+
def __init__(
|
279 |
+
self,
|
280 |
+
dim,
|
281 |
+
dim_inputs: Tuple[int, ...],
|
282 |
+
depth,
|
283 |
+
mlp_expansion_factor=4
|
284 |
+
):
|
285 |
+
super().__init__()
|
286 |
+
self.dim_inputs = dim_inputs
|
287 |
+
self.to_freqs = ModuleList([])
|
288 |
+
dim_hidden = dim * mlp_expansion_factor
|
289 |
+
|
290 |
+
for dim_in in dim_inputs:
|
291 |
+
net = []
|
292 |
+
|
293 |
+
mlp = nn.Sequential(
|
294 |
+
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
|
295 |
+
nn.GLU(dim=-1)
|
296 |
+
)
|
297 |
+
|
298 |
+
self.to_freqs.append(mlp)
|
299 |
+
|
300 |
+
def forward(self, x):
|
301 |
+
x = x.unbind(dim=-2)
|
302 |
+
|
303 |
+
outs = []
|
304 |
+
|
305 |
+
for band_features, mlp in zip(x, self.to_freqs):
|
306 |
+
freq_out = mlp(band_features)
|
307 |
+
outs.append(freq_out)
|
308 |
+
|
309 |
+
return torch.cat(outs, dim=-1)
|
310 |
+
|
311 |
+
|
312 |
+
# main class
|
313 |
+
|
314 |
+
DEFAULT_FREQS_PER_BANDS = (
|
315 |
+
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
316 |
+
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
317 |
+
2, 2, 2, 2,
|
318 |
+
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
319 |
+
12, 12, 12, 12, 12, 12, 12, 12,
|
320 |
+
24, 24, 24, 24, 24, 24, 24, 24,
|
321 |
+
48, 48, 48, 48, 48, 48, 48, 48,
|
322 |
+
128, 129,
|
323 |
+
)
|
324 |
+
|
325 |
+
|
326 |
+
class BSRoformer(Module):
|
327 |
+
|
328 |
+
@beartype
|
329 |
+
def __init__(
|
330 |
+
self,
|
331 |
+
dim,
|
332 |
+
*,
|
333 |
+
depth,
|
334 |
+
stereo=False,
|
335 |
+
num_stems=1,
|
336 |
+
time_transformer_depth=2,
|
337 |
+
freq_transformer_depth=2,
|
338 |
+
linear_transformer_depth=0,
|
339 |
+
freqs_per_bands: Tuple[int, ...] = DEFAULT_FREQS_PER_BANDS,
|
340 |
+
# in the paper, they divide into ~60 bands, test with 1 for starters
|
341 |
+
dim_head=64,
|
342 |
+
heads=8,
|
343 |
+
attn_dropout=0.,
|
344 |
+
ff_dropout=0.,
|
345 |
+
flash_attn=True,
|
346 |
+
dim_freqs_in=1025,
|
347 |
+
stft_n_fft=2048,
|
348 |
+
stft_hop_length=512,
|
349 |
+
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
350 |
+
stft_win_length=2048,
|
351 |
+
stft_normalized=False,
|
352 |
+
stft_window_fn: Optional[Callable] = None,
|
353 |
+
mask_estimator_depth=2,
|
354 |
+
multi_stft_resolution_loss_weight=1.,
|
355 |
+
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
356 |
+
multi_stft_hop_size=147,
|
357 |
+
multi_stft_normalized=False,
|
358 |
+
multi_stft_window_fn: Callable = torch.hann_window
|
359 |
+
):
|
360 |
+
super().__init__()
|
361 |
+
|
362 |
+
self.stereo = stereo
|
363 |
+
self.audio_channels = 2 if stereo else 1
|
364 |
+
self.num_stems = num_stems
|
365 |
+
|
366 |
+
self.layers = ModuleList([])
|
367 |
+
|
368 |
+
transformer_kwargs = dict(
|
369 |
+
dim=dim,
|
370 |
+
heads=heads,
|
371 |
+
dim_head=dim_head,
|
372 |
+
attn_dropout=attn_dropout,
|
373 |
+
ff_dropout=ff_dropout,
|
374 |
+
flash_attn=flash_attn,
|
375 |
+
norm_output=False
|
376 |
+
)
|
377 |
+
|
378 |
+
time_rotary_embed = RotaryEmbedding(dim=dim_head)
|
379 |
+
freq_rotary_embed = RotaryEmbedding(dim=dim_head)
|
380 |
+
|
381 |
+
for _ in range(depth):
|
382 |
+
tran_modules = []
|
383 |
+
if linear_transformer_depth > 0:
|
384 |
+
tran_modules.append(Transformer(depth=linear_transformer_depth, linear_attn=True, **transformer_kwargs))
|
385 |
+
tran_modules.append(
|
386 |
+
Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs)
|
387 |
+
)
|
388 |
+
tran_modules.append(
|
389 |
+
Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs)
|
390 |
+
)
|
391 |
+
self.layers.append(nn.ModuleList(tran_modules))
|
392 |
+
|
393 |
+
self.final_norm = RMSNorm(dim)
|
394 |
+
|
395 |
+
self.stft_kwargs = dict(
|
396 |
+
n_fft=stft_n_fft,
|
397 |
+
hop_length=stft_hop_length,
|
398 |
+
win_length=stft_win_length,
|
399 |
+
normalized=stft_normalized
|
400 |
+
)
|
401 |
+
|
402 |
+
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)
|
403 |
+
|
404 |
+
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_n_fft), return_complex=True).shape[1]
|
405 |
+
|
406 |
+
assert len(freqs_per_bands) > 1
|
407 |
+
assert sum(
|
408 |
+
freqs_per_bands) == freqs, f'the number of freqs in the bands must equal {freqs} based on the STFT settings, but got {sum(freqs_per_bands)}'
|
409 |
+
|
410 |
+
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in freqs_per_bands)
|
411 |
+
|
412 |
+
self.band_split = BandSplit(
|
413 |
+
dim=dim,
|
414 |
+
dim_inputs=freqs_per_bands_with_complex
|
415 |
+
)
|
416 |
+
|
417 |
+
self.mask_estimators = nn.ModuleList([])
|
418 |
+
|
419 |
+
for _ in range(num_stems):
|
420 |
+
mask_estimator = MaskEstimator(
|
421 |
+
dim=dim,
|
422 |
+
dim_inputs=freqs_per_bands_with_complex,
|
423 |
+
depth=mask_estimator_depth
|
424 |
+
)
|
425 |
+
|
426 |
+
self.mask_estimators.append(mask_estimator)
|
427 |
+
|
428 |
+
# for the multi-resolution stft loss
|
429 |
+
|
430 |
+
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight
|
431 |
+
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes
|
432 |
+
self.multi_stft_n_fft = stft_n_fft
|
433 |
+
self.multi_stft_window_fn = multi_stft_window_fn
|
434 |
+
|
435 |
+
self.multi_stft_kwargs = dict(
|
436 |
+
hop_length=multi_stft_hop_size,
|
437 |
+
normalized=multi_stft_normalized
|
438 |
+
)
|
439 |
+
|
440 |
+
def forward(
|
441 |
+
self,
|
442 |
+
raw_audio,
|
443 |
+
target=None,
|
444 |
+
return_loss_breakdown=False
|
445 |
+
):
|
446 |
+
"""
|
447 |
+
einops
|
448 |
+
|
449 |
+
b - batch
|
450 |
+
f - freq
|
451 |
+
t - time
|
452 |
+
s - audio channel (1 for mono, 2 for stereo)
|
453 |
+
n - number of 'stems'
|
454 |
+
c - complex (2)
|
455 |
+
d - feature dimension
|
456 |
+
"""
|
457 |
+
|
458 |
+
device = raw_audio.device
|
459 |
+
|
460 |
+
# defining whether model is loaded on MPS (MacOS GPU accelerator)
|
461 |
+
x_is_mps = True if device.type == "mps" else False
|
462 |
+
|
463 |
+
if raw_audio.ndim == 2:
|
464 |
+
raw_audio = rearrange(raw_audio, 'b t -> b 1 t')
|
465 |
+
|
466 |
+
channels = raw_audio.shape[1]
|
467 |
+
assert (not self.stereo and channels == 1) or (
|
468 |
+
self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'
|
469 |
+
|
470 |
+
# to stft
|
471 |
+
|
472 |
+
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')
|
473 |
+
|
474 |
+
stft_window = self.stft_window_fn(device=device)
|
475 |
+
|
476 |
+
# RuntimeError: FFT operations are only supported on MacOS 14+
|
477 |
+
# Since it's tedious to define whether we're on correct MacOS version - simple try-catch is used
|
478 |
+
try:
|
479 |
+
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
|
480 |
+
except:
|
481 |
+
stft_repr = torch.stft(raw_audio.cpu() if x_is_mps else raw_audio, **self.stft_kwargs, window=stft_window.cpu() if x_is_mps else stft_window, return_complex=True).to(device)
|
482 |
+
|
483 |
+
stft_repr = torch.view_as_real(stft_repr)
|
484 |
+
|
485 |
+
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')
|
486 |
+
stft_repr = rearrange(stft_repr,
|
487 |
+
'b s f t c -> b (f s) t c') # merge stereo / mono into the frequency, with frequency leading dimension, for band splitting
|
488 |
+
|
489 |
+
x = rearrange(stft_repr, 'b f t c -> b t (f c)')
|
490 |
+
|
491 |
+
x = self.band_split(x)
|
492 |
+
|
493 |
+
# axial / hierarchical attention
|
494 |
+
|
495 |
+
for transformer_block in self.layers:
|
496 |
+
|
497 |
+
if len(transformer_block) == 3:
|
498 |
+
linear_transformer, time_transformer, freq_transformer = transformer_block
|
499 |
+
|
500 |
+
x, ft_ps = pack([x], 'b * d')
|
501 |
+
x = linear_transformer(x)
|
502 |
+
x, = unpack(x, ft_ps, 'b * d')
|
503 |
+
else:
|
504 |
+
time_transformer, freq_transformer = transformer_block
|
505 |
+
|
506 |
+
x = rearrange(x, 'b t f d -> b f t d')
|
507 |
+
x, ps = pack([x], '* t d')
|
508 |
+
|
509 |
+
x = time_transformer(x)
|
510 |
+
|
511 |
+
x, = unpack(x, ps, '* t d')
|
512 |
+
x = rearrange(x, 'b f t d -> b t f d')
|
513 |
+
x, ps = pack([x], '* f d')
|
514 |
+
|
515 |
+
x = freq_transformer(x)
|
516 |
+
|
517 |
+
x, = unpack(x, ps, '* f d')
|
518 |
+
|
519 |
+
x = self.final_norm(x)
|
520 |
+
|
521 |
+
num_stems = len(self.mask_estimators)
|
522 |
+
|
523 |
+
mask = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
|
524 |
+
mask = rearrange(mask, 'b n t (f c) -> b n f t c', c=2)
|
525 |
+
|
526 |
+
# modulate frequency representation
|
527 |
+
|
528 |
+
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')
|
529 |
+
|
530 |
+
# complex number multiplication
|
531 |
+
|
532 |
+
stft_repr = torch.view_as_complex(stft_repr)
|
533 |
+
mask = torch.view_as_complex(mask)
|
534 |
+
|
535 |
+
stft_repr = stft_repr * mask
|
536 |
+
|
537 |
+
# istft
|
538 |
+
|
539 |
+
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)
|
540 |
+
|
541 |
+
# same as torch.stft() fix for MacOS MPS above
|
542 |
+
try:
|
543 |
+
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False)
|
544 |
+
except:
|
545 |
+
recon_audio = torch.istft(stft_repr.cpu() if x_is_mps else stft_repr, **self.stft_kwargs, window=stft_window.cpu() if x_is_mps else stft_window, return_complex=False).to(device)
|
546 |
+
|
547 |
+
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', s=self.audio_channels, n=num_stems)
|
548 |
+
|
549 |
+
if num_stems == 1:
|
550 |
+
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')
|
551 |
+
|
552 |
+
# if a target is passed in, calculate loss for learning
|
553 |
+
|
554 |
+
if not exists(target):
|
555 |
+
return recon_audio
|
556 |
+
|
557 |
+
if self.num_stems > 1:
|
558 |
+
assert target.ndim == 4 and target.shape[1] == self.num_stems
|
559 |
+
|
560 |
+
if target.ndim == 2:
|
561 |
+
target = rearrange(target, '... t -> ... 1 t')
|
562 |
+
|
563 |
+
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft
|
564 |
+
|
565 |
+
loss = F.l1_loss(recon_audio, target)
|
566 |
+
|
567 |
+
multi_stft_resolution_loss = 0.
|
568 |
+
|
569 |
+
for window_size in self.multi_stft_resolutions_window_sizes:
|
570 |
+
res_stft_kwargs = dict(
|
571 |
+
n_fft=max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft
|
572 |
+
win_length=window_size,
|
573 |
+
return_complex=True,
|
574 |
+
window=self.multi_stft_window_fn(window_size, device=device),
|
575 |
+
**self.multi_stft_kwargs,
|
576 |
+
)
|
577 |
+
|
578 |
+
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
|
579 |
+
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)
|
580 |
+
|
581 |
+
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
|
582 |
+
|
583 |
+
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight
|
584 |
+
|
585 |
+
total_loss = loss + weighted_multi_resolution_loss
|
586 |
+
|
587 |
+
if not return_loss_breakdown:
|
588 |
+
return total_loss
|
589 |
+
|
590 |
+
return total_loss, (loss, multi_stft_resolution_loss)
|
models/bs_roformer/mel_band_roformer.py
ADDED
@@ -0,0 +1,637 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn, einsum, Tensor
|
5 |
+
from torch.nn import Module, ModuleList
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from models.bs_roformer.attend import Attend
|
9 |
+
|
10 |
+
from beartype.typing import Tuple, Optional, List, Callable
|
11 |
+
from beartype import beartype
|
12 |
+
|
13 |
+
from rotary_embedding_torch import RotaryEmbedding
|
14 |
+
|
15 |
+
from einops import rearrange, pack, unpack, reduce, repeat
|
16 |
+
from einops.layers.torch import Rearrange
|
17 |
+
|
18 |
+
from librosa import filters
|
19 |
+
|
20 |
+
|
21 |
+
# helper functions
|
22 |
+
|
23 |
+
def exists(val):
|
24 |
+
return val is not None
|
25 |
+
|
26 |
+
|
27 |
+
def default(v, d):
|
28 |
+
return v if exists(v) else d
|
29 |
+
|
30 |
+
|
31 |
+
def pack_one(t, pattern):
|
32 |
+
return pack([t], pattern)
|
33 |
+
|
34 |
+
|
35 |
+
def unpack_one(t, ps, pattern):
|
36 |
+
return unpack(t, ps, pattern)[0]
|
37 |
+
|
38 |
+
|
39 |
+
def pad_at_dim(t, pad, dim=-1, value=0.):
|
40 |
+
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
|
41 |
+
zeros = ((0, 0) * dims_from_right)
|
42 |
+
return F.pad(t, (*zeros, *pad), value=value)
|
43 |
+
|
44 |
+
|
45 |
+
def l2norm(t):
|
46 |
+
return F.normalize(t, dim=-1, p=2)
|
47 |
+
|
48 |
+
|
49 |
+
# norm
|
50 |
+
|
51 |
+
class RMSNorm(Module):
|
52 |
+
def __init__(self, dim):
|
53 |
+
super().__init__()
|
54 |
+
self.scale = dim ** 0.5
|
55 |
+
self.gamma = nn.Parameter(torch.ones(dim))
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
return F.normalize(x, dim=-1) * self.scale * self.gamma
|
59 |
+
|
60 |
+
|
61 |
+
# attention
|
62 |
+
|
63 |
+
class FeedForward(Module):
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
dim,
|
67 |
+
mult=4,
|
68 |
+
dropout=0.
|
69 |
+
):
|
70 |
+
super().__init__()
|
71 |
+
dim_inner = int(dim * mult)
|
72 |
+
self.net = nn.Sequential(
|
73 |
+
RMSNorm(dim),
|
74 |
+
nn.Linear(dim, dim_inner),
|
75 |
+
nn.GELU(),
|
76 |
+
nn.Dropout(dropout),
|
77 |
+
nn.Linear(dim_inner, dim),
|
78 |
+
nn.Dropout(dropout)
|
79 |
+
)
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
return self.net(x)
|
83 |
+
|
84 |
+
|
85 |
+
class Attention(Module):
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
dim,
|
89 |
+
heads=8,
|
90 |
+
dim_head=64,
|
91 |
+
dropout=0.,
|
92 |
+
rotary_embed=None,
|
93 |
+
flash=True
|
94 |
+
):
|
95 |
+
super().__init__()
|
96 |
+
self.heads = heads
|
97 |
+
self.scale = dim_head ** -0.5
|
98 |
+
dim_inner = heads * dim_head
|
99 |
+
|
100 |
+
self.rotary_embed = rotary_embed
|
101 |
+
|
102 |
+
self.attend = Attend(flash=flash, dropout=dropout)
|
103 |
+
|
104 |
+
self.norm = RMSNorm(dim)
|
105 |
+
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False)
|
106 |
+
|
107 |
+
self.to_gates = nn.Linear(dim, heads)
|
108 |
+
|
109 |
+
self.to_out = nn.Sequential(
|
110 |
+
nn.Linear(dim_inner, dim, bias=False),
|
111 |
+
nn.Dropout(dropout)
|
112 |
+
)
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
x = self.norm(x)
|
116 |
+
|
117 |
+
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)
|
118 |
+
|
119 |
+
if exists(self.rotary_embed):
|
120 |
+
q = self.rotary_embed.rotate_queries_or_keys(q)
|
121 |
+
k = self.rotary_embed.rotate_queries_or_keys(k)
|
122 |
+
|
123 |
+
out = self.attend(q, k, v)
|
124 |
+
|
125 |
+
gates = self.to_gates(x)
|
126 |
+
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()
|
127 |
+
|
128 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
129 |
+
return self.to_out(out)
|
130 |
+
|
131 |
+
|
132 |
+
class LinearAttention(Module):
|
133 |
+
"""
|
134 |
+
this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al.
|
135 |
+
"""
|
136 |
+
|
137 |
+
@beartype
|
138 |
+
def __init__(
|
139 |
+
self,
|
140 |
+
*,
|
141 |
+
dim,
|
142 |
+
dim_head=32,
|
143 |
+
heads=8,
|
144 |
+
scale=8,
|
145 |
+
flash=False,
|
146 |
+
dropout=0.
|
147 |
+
):
|
148 |
+
super().__init__()
|
149 |
+
dim_inner = dim_head * heads
|
150 |
+
self.norm = RMSNorm(dim)
|
151 |
+
|
152 |
+
self.to_qkv = nn.Sequential(
|
153 |
+
nn.Linear(dim, dim_inner * 3, bias=False),
|
154 |
+
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
|
155 |
+
)
|
156 |
+
|
157 |
+
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
|
158 |
+
|
159 |
+
self.attend = Attend(
|
160 |
+
scale=scale,
|
161 |
+
dropout=dropout,
|
162 |
+
flash=flash
|
163 |
+
)
|
164 |
+
|
165 |
+
self.to_out = nn.Sequential(
|
166 |
+
Rearrange('b h d n -> b n (h d)'),
|
167 |
+
nn.Linear(dim_inner, dim, bias=False)
|
168 |
+
)
|
169 |
+
|
170 |
+
def forward(
|
171 |
+
self,
|
172 |
+
x
|
173 |
+
):
|
174 |
+
x = self.norm(x)
|
175 |
+
|
176 |
+
q, k, v = self.to_qkv(x)
|
177 |
+
|
178 |
+
q, k = map(l2norm, (q, k))
|
179 |
+
q = q * self.temperature.exp()
|
180 |
+
|
181 |
+
out = self.attend(q, k, v)
|
182 |
+
|
183 |
+
return self.to_out(out)
|
184 |
+
|
185 |
+
|
186 |
+
class Transformer(Module):
|
187 |
+
def __init__(
|
188 |
+
self,
|
189 |
+
*,
|
190 |
+
dim,
|
191 |
+
depth,
|
192 |
+
dim_head=64,
|
193 |
+
heads=8,
|
194 |
+
attn_dropout=0.,
|
195 |
+
ff_dropout=0.,
|
196 |
+
ff_mult=4,
|
197 |
+
norm_output=True,
|
198 |
+
rotary_embed=None,
|
199 |
+
flash_attn=True,
|
200 |
+
linear_attn=False
|
201 |
+
):
|
202 |
+
super().__init__()
|
203 |
+
self.layers = ModuleList([])
|
204 |
+
|
205 |
+
for _ in range(depth):
|
206 |
+
if linear_attn:
|
207 |
+
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn)
|
208 |
+
else:
|
209 |
+
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout,
|
210 |
+
rotary_embed=rotary_embed, flash=flash_attn)
|
211 |
+
|
212 |
+
self.layers.append(ModuleList([
|
213 |
+
attn,
|
214 |
+
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
|
215 |
+
]))
|
216 |
+
|
217 |
+
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
|
218 |
+
|
219 |
+
def forward(self, x):
|
220 |
+
|
221 |
+
for attn, ff in self.layers:
|
222 |
+
x = attn(x) + x
|
223 |
+
x = ff(x) + x
|
224 |
+
|
225 |
+
return self.norm(x)
|
226 |
+
|
227 |
+
|
228 |
+
# bandsplit module
|
229 |
+
|
230 |
+
class BandSplit(Module):
|
231 |
+
@beartype
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
dim,
|
235 |
+
dim_inputs: Tuple[int, ...]
|
236 |
+
):
|
237 |
+
super().__init__()
|
238 |
+
self.dim_inputs = dim_inputs
|
239 |
+
self.to_features = ModuleList([])
|
240 |
+
|
241 |
+
for dim_in in dim_inputs:
|
242 |
+
net = nn.Sequential(
|
243 |
+
RMSNorm(dim_in),
|
244 |
+
nn.Linear(dim_in, dim)
|
245 |
+
)
|
246 |
+
|
247 |
+
self.to_features.append(net)
|
248 |
+
|
249 |
+
def forward(self, x):
|
250 |
+
x = x.split(self.dim_inputs, dim=-1)
|
251 |
+
|
252 |
+
outs = []
|
253 |
+
for split_input, to_feature in zip(x, self.to_features):
|
254 |
+
split_output = to_feature(split_input)
|
255 |
+
outs.append(split_output)
|
256 |
+
|
257 |
+
return torch.stack(outs, dim=-2)
|
258 |
+
|
259 |
+
|
260 |
+
def MLP(
|
261 |
+
dim_in,
|
262 |
+
dim_out,
|
263 |
+
dim_hidden=None,
|
264 |
+
depth=1,
|
265 |
+
activation=nn.Tanh
|
266 |
+
):
|
267 |
+
dim_hidden = default(dim_hidden, dim_in)
|
268 |
+
|
269 |
+
net = []
|
270 |
+
dims = (dim_in, *((dim_hidden,) * depth), dim_out)
|
271 |
+
|
272 |
+
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])):
|
273 |
+
is_last = ind == (len(dims) - 2)
|
274 |
+
|
275 |
+
net.append(nn.Linear(layer_dim_in, layer_dim_out))
|
276 |
+
|
277 |
+
if is_last:
|
278 |
+
continue
|
279 |
+
|
280 |
+
net.append(activation())
|
281 |
+
|
282 |
+
return nn.Sequential(*net)
|
283 |
+
|
284 |
+
|
285 |
+
class MaskEstimator(Module):
|
286 |
+
@beartype
|
287 |
+
def __init__(
|
288 |
+
self,
|
289 |
+
dim,
|
290 |
+
dim_inputs: Tuple[int, ...],
|
291 |
+
depth,
|
292 |
+
mlp_expansion_factor=4
|
293 |
+
):
|
294 |
+
super().__init__()
|
295 |
+
self.dim_inputs = dim_inputs
|
296 |
+
self.to_freqs = ModuleList([])
|
297 |
+
dim_hidden = dim * mlp_expansion_factor
|
298 |
+
|
299 |
+
for dim_in in dim_inputs:
|
300 |
+
net = []
|
301 |
+
|
302 |
+
mlp = nn.Sequential(
|
303 |
+
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
|
304 |
+
nn.GLU(dim=-1)
|
305 |
+
)
|
306 |
+
|
307 |
+
self.to_freqs.append(mlp)
|
308 |
+
|
309 |
+
def forward(self, x):
|
310 |
+
x = x.unbind(dim=-2)
|
311 |
+
|
312 |
+
outs = []
|
313 |
+
|
314 |
+
for band_features, mlp in zip(x, self.to_freqs):
|
315 |
+
freq_out = mlp(band_features)
|
316 |
+
outs.append(freq_out)
|
317 |
+
|
318 |
+
return torch.cat(outs, dim=-1)
|
319 |
+
|
320 |
+
|
321 |
+
# main class
|
322 |
+
|
323 |
+
class MelBandRoformer(Module):
|
324 |
+
|
325 |
+
@beartype
|
326 |
+
def __init__(
|
327 |
+
self,
|
328 |
+
dim,
|
329 |
+
*,
|
330 |
+
depth,
|
331 |
+
stereo=False,
|
332 |
+
num_stems=1,
|
333 |
+
time_transformer_depth=2,
|
334 |
+
freq_transformer_depth=2,
|
335 |
+
linear_transformer_depth=0,
|
336 |
+
num_bands=60,
|
337 |
+
dim_head=64,
|
338 |
+
heads=8,
|
339 |
+
attn_dropout=0.1,
|
340 |
+
ff_dropout=0.1,
|
341 |
+
flash_attn=True,
|
342 |
+
dim_freqs_in=1025,
|
343 |
+
sample_rate=44100, # needed for mel filter bank from librosa
|
344 |
+
stft_n_fft=2048,
|
345 |
+
stft_hop_length=512,
|
346 |
+
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
347 |
+
stft_win_length=2048,
|
348 |
+
stft_normalized=False,
|
349 |
+
stft_window_fn: Optional[Callable] = None,
|
350 |
+
mask_estimator_depth=1,
|
351 |
+
multi_stft_resolution_loss_weight=1.,
|
352 |
+
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
353 |
+
multi_stft_hop_size=147,
|
354 |
+
multi_stft_normalized=False,
|
355 |
+
multi_stft_window_fn: Callable = torch.hann_window,
|
356 |
+
match_input_audio_length=False, # if True, pad output tensor to match length of input tensor
|
357 |
+
):
|
358 |
+
super().__init__()
|
359 |
+
|
360 |
+
self.stereo = stereo
|
361 |
+
self.audio_channels = 2 if stereo else 1
|
362 |
+
self.num_stems = num_stems
|
363 |
+
|
364 |
+
self.layers = ModuleList([])
|
365 |
+
|
366 |
+
transformer_kwargs = dict(
|
367 |
+
dim=dim,
|
368 |
+
heads=heads,
|
369 |
+
dim_head=dim_head,
|
370 |
+
attn_dropout=attn_dropout,
|
371 |
+
ff_dropout=ff_dropout,
|
372 |
+
flash_attn=flash_attn
|
373 |
+
)
|
374 |
+
|
375 |
+
time_rotary_embed = RotaryEmbedding(dim=dim_head)
|
376 |
+
freq_rotary_embed = RotaryEmbedding(dim=dim_head)
|
377 |
+
|
378 |
+
for _ in range(depth):
|
379 |
+
tran_modules = []
|
380 |
+
if linear_transformer_depth > 0:
|
381 |
+
tran_modules.append(Transformer(depth=linear_transformer_depth, linear_attn=True, **transformer_kwargs))
|
382 |
+
tran_modules.append(
|
383 |
+
Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs)
|
384 |
+
)
|
385 |
+
tran_modules.append(
|
386 |
+
Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs)
|
387 |
+
)
|
388 |
+
self.layers.append(nn.ModuleList(tran_modules))
|
389 |
+
|
390 |
+
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)
|
391 |
+
|
392 |
+
self.stft_kwargs = dict(
|
393 |
+
n_fft=stft_n_fft,
|
394 |
+
hop_length=stft_hop_length,
|
395 |
+
win_length=stft_win_length,
|
396 |
+
normalized=stft_normalized
|
397 |
+
)
|
398 |
+
|
399 |
+
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_n_fft), return_complex=True).shape[1]
|
400 |
+
|
401 |
+
# create mel filter bank
|
402 |
+
# with librosa.filters.mel as in section 2 of paper
|
403 |
+
|
404 |
+
mel_filter_bank_numpy = filters.mel(sr=sample_rate, n_fft=stft_n_fft, n_mels=num_bands)
|
405 |
+
|
406 |
+
mel_filter_bank = torch.from_numpy(mel_filter_bank_numpy)
|
407 |
+
|
408 |
+
# for some reason, it doesn't include the first freq? just force a value for now
|
409 |
+
|
410 |
+
mel_filter_bank[0][0] = 1.
|
411 |
+
|
412 |
+
# In some systems/envs we get 0.0 instead of ~1.9e-18 in the last position,
|
413 |
+
# so let's force a positive value
|
414 |
+
|
415 |
+
mel_filter_bank[-1, -1] = 1.
|
416 |
+
|
417 |
+
# binary as in paper (then estimated masks are averaged for overlapping regions)
|
418 |
+
|
419 |
+
freqs_per_band = mel_filter_bank > 0
|
420 |
+
assert freqs_per_band.any(dim=0).all(), 'all frequencies need to be covered by all bands for now'
|
421 |
+
|
422 |
+
repeated_freq_indices = repeat(torch.arange(freqs), 'f -> b f', b=num_bands)
|
423 |
+
freq_indices = repeated_freq_indices[freqs_per_band]
|
424 |
+
|
425 |
+
if stereo:
|
426 |
+
freq_indices = repeat(freq_indices, 'f -> f s', s=2)
|
427 |
+
freq_indices = freq_indices * 2 + torch.arange(2)
|
428 |
+
freq_indices = rearrange(freq_indices, 'f s -> (f s)')
|
429 |
+
|
430 |
+
self.register_buffer('freq_indices', freq_indices, persistent=False)
|
431 |
+
self.register_buffer('freqs_per_band', freqs_per_band, persistent=False)
|
432 |
+
|
433 |
+
num_freqs_per_band = reduce(freqs_per_band, 'b f -> b', 'sum')
|
434 |
+
num_bands_per_freq = reduce(freqs_per_band, 'b f -> f', 'sum')
|
435 |
+
|
436 |
+
self.register_buffer('num_freqs_per_band', num_freqs_per_band, persistent=False)
|
437 |
+
self.register_buffer('num_bands_per_freq', num_bands_per_freq, persistent=False)
|
438 |
+
|
439 |
+
# band split and mask estimator
|
440 |
+
|
441 |
+
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in num_freqs_per_band.tolist())
|
442 |
+
|
443 |
+
self.band_split = BandSplit(
|
444 |
+
dim=dim,
|
445 |
+
dim_inputs=freqs_per_bands_with_complex
|
446 |
+
)
|
447 |
+
|
448 |
+
self.mask_estimators = nn.ModuleList([])
|
449 |
+
|
450 |
+
for _ in range(num_stems):
|
451 |
+
mask_estimator = MaskEstimator(
|
452 |
+
dim=dim,
|
453 |
+
dim_inputs=freqs_per_bands_with_complex,
|
454 |
+
depth=mask_estimator_depth
|
455 |
+
)
|
456 |
+
|
457 |
+
self.mask_estimators.append(mask_estimator)
|
458 |
+
|
459 |
+
# for the multi-resolution stft loss
|
460 |
+
|
461 |
+
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight
|
462 |
+
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes
|
463 |
+
self.multi_stft_n_fft = stft_n_fft
|
464 |
+
self.multi_stft_window_fn = multi_stft_window_fn
|
465 |
+
|
466 |
+
self.multi_stft_kwargs = dict(
|
467 |
+
hop_length=multi_stft_hop_size,
|
468 |
+
normalized=multi_stft_normalized
|
469 |
+
)
|
470 |
+
|
471 |
+
self.match_input_audio_length = match_input_audio_length
|
472 |
+
|
473 |
+
def forward(
|
474 |
+
self,
|
475 |
+
raw_audio,
|
476 |
+
target=None,
|
477 |
+
return_loss_breakdown=False
|
478 |
+
):
|
479 |
+
"""
|
480 |
+
einops
|
481 |
+
|
482 |
+
b - batch
|
483 |
+
f - freq
|
484 |
+
t - time
|
485 |
+
s - audio channel (1 for mono, 2 for stereo)
|
486 |
+
n - number of 'stems'
|
487 |
+
c - complex (2)
|
488 |
+
d - feature dimension
|
489 |
+
"""
|
490 |
+
|
491 |
+
device = raw_audio.device
|
492 |
+
|
493 |
+
if raw_audio.ndim == 2:
|
494 |
+
raw_audio = rearrange(raw_audio, 'b t -> b 1 t')
|
495 |
+
|
496 |
+
batch, channels, raw_audio_length = raw_audio.shape
|
497 |
+
|
498 |
+
istft_length = raw_audio_length if self.match_input_audio_length else None
|
499 |
+
|
500 |
+
assert (not self.stereo and channels == 1) or (
|
501 |
+
self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'
|
502 |
+
|
503 |
+
# to stft
|
504 |
+
|
505 |
+
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')
|
506 |
+
|
507 |
+
stft_window = self.stft_window_fn(device=device)
|
508 |
+
|
509 |
+
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
|
510 |
+
stft_repr = torch.view_as_real(stft_repr)
|
511 |
+
|
512 |
+
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')
|
513 |
+
stft_repr = rearrange(stft_repr,
|
514 |
+
'b s f t c -> b (f s) t c') # merge stereo / mono into the frequency, with frequency leading dimension, for band splitting
|
515 |
+
|
516 |
+
# index out all frequencies for all frequency ranges across bands ascending in one go
|
517 |
+
|
518 |
+
batch_arange = torch.arange(batch, device=device)[..., None]
|
519 |
+
|
520 |
+
# account for stereo
|
521 |
+
|
522 |
+
x = stft_repr[batch_arange, self.freq_indices]
|
523 |
+
|
524 |
+
# fold the complex (real and imag) into the frequencies dimension
|
525 |
+
|
526 |
+
x = rearrange(x, 'b f t c -> b t (f c)')
|
527 |
+
|
528 |
+
x = self.band_split(x)
|
529 |
+
|
530 |
+
# axial / hierarchical attention
|
531 |
+
|
532 |
+
for transformer_block in self.layers:
|
533 |
+
|
534 |
+
if len(transformer_block) == 3:
|
535 |
+
linear_transformer, time_transformer, freq_transformer = transformer_block
|
536 |
+
|
537 |
+
x, ft_ps = pack([x], 'b * d')
|
538 |
+
x = linear_transformer(x)
|
539 |
+
x, = unpack(x, ft_ps, 'b * d')
|
540 |
+
else:
|
541 |
+
time_transformer, freq_transformer = transformer_block
|
542 |
+
|
543 |
+
x = rearrange(x, 'b t f d -> b f t d')
|
544 |
+
x, ps = pack([x], '* t d')
|
545 |
+
|
546 |
+
x = time_transformer(x)
|
547 |
+
|
548 |
+
x, = unpack(x, ps, '* t d')
|
549 |
+
x = rearrange(x, 'b f t d -> b t f d')
|
550 |
+
x, ps = pack([x], '* f d')
|
551 |
+
|
552 |
+
x = freq_transformer(x)
|
553 |
+
|
554 |
+
x, = unpack(x, ps, '* f d')
|
555 |
+
|
556 |
+
num_stems = len(self.mask_estimators)
|
557 |
+
|
558 |
+
masks = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
|
559 |
+
masks = rearrange(masks, 'b n t (f c) -> b n f t c', c=2)
|
560 |
+
|
561 |
+
# modulate frequency representation
|
562 |
+
|
563 |
+
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')
|
564 |
+
|
565 |
+
# complex number multiplication
|
566 |
+
|
567 |
+
stft_repr = torch.view_as_complex(stft_repr)
|
568 |
+
masks = torch.view_as_complex(masks)
|
569 |
+
|
570 |
+
masks = masks.type(stft_repr.dtype)
|
571 |
+
|
572 |
+
# need to average the estimated mask for the overlapped frequencies
|
573 |
+
|
574 |
+
scatter_indices = repeat(self.freq_indices, 'f -> b n f t', b=batch, n=num_stems, t=stft_repr.shape[-1])
|
575 |
+
|
576 |
+
stft_repr_expanded_stems = repeat(stft_repr, 'b 1 ... -> b n ...', n=num_stems)
|
577 |
+
masks_summed = torch.zeros_like(stft_repr_expanded_stems).scatter_add_(2, scatter_indices, masks)
|
578 |
+
|
579 |
+
denom = repeat(self.num_bands_per_freq, 'f -> (f r) 1', r=channels)
|
580 |
+
|
581 |
+
masks_averaged = masks_summed / denom.clamp(min=1e-8)
|
582 |
+
|
583 |
+
# modulate stft repr with estimated mask
|
584 |
+
|
585 |
+
stft_repr = stft_repr * masks_averaged
|
586 |
+
|
587 |
+
# istft
|
588 |
+
|
589 |
+
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)
|
590 |
+
|
591 |
+
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False,
|
592 |
+
length=istft_length)
|
593 |
+
|
594 |
+
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', b=batch, s=self.audio_channels, n=num_stems)
|
595 |
+
|
596 |
+
if num_stems == 1:
|
597 |
+
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')
|
598 |
+
|
599 |
+
# if a target is passed in, calculate loss for learning
|
600 |
+
|
601 |
+
if not exists(target):
|
602 |
+
return recon_audio
|
603 |
+
|
604 |
+
if self.num_stems > 1:
|
605 |
+
assert target.ndim == 4 and target.shape[1] == self.num_stems
|
606 |
+
|
607 |
+
if target.ndim == 2:
|
608 |
+
target = rearrange(target, '... t -> ... 1 t')
|
609 |
+
|
610 |
+
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft
|
611 |
+
|
612 |
+
loss = F.l1_loss(recon_audio, target)
|
613 |
+
|
614 |
+
multi_stft_resolution_loss = 0.
|
615 |
+
|
616 |
+
for window_size in self.multi_stft_resolutions_window_sizes:
|
617 |
+
res_stft_kwargs = dict(
|
618 |
+
n_fft=max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft
|
619 |
+
win_length=window_size,
|
620 |
+
return_complex=True,
|
621 |
+
window=self.multi_stft_window_fn(window_size, device=device),
|
622 |
+
**self.multi_stft_kwargs,
|
623 |
+
)
|
624 |
+
|
625 |
+
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
|
626 |
+
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)
|
627 |
+
|
628 |
+
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
|
629 |
+
|
630 |
+
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight
|
631 |
+
|
632 |
+
total_loss = loss + weighted_multi_resolution_loss
|
633 |
+
|
634 |
+
if not return_loss_breakdown:
|
635 |
+
return total_loss
|
636 |
+
|
637 |
+
return total_loss, (loss, multi_stft_resolution_loss)
|
models/demucs4ht.py
ADDED
@@ -0,0 +1,713 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import json
|
9 |
+
from omegaconf import OmegaConf
|
10 |
+
from demucs.demucs import Demucs
|
11 |
+
from demucs.hdemucs import HDemucs
|
12 |
+
|
13 |
+
import math
|
14 |
+
from openunmix.filtering import wiener
|
15 |
+
from torch import nn
|
16 |
+
from torch.nn import functional as F
|
17 |
+
from fractions import Fraction
|
18 |
+
from einops import rearrange
|
19 |
+
|
20 |
+
from demucs.transformer import CrossTransformerEncoder
|
21 |
+
|
22 |
+
from demucs.demucs import rescale_module
|
23 |
+
from demucs.states import capture_init
|
24 |
+
from demucs.spec import spectro, ispectro
|
25 |
+
from demucs.hdemucs import pad1d, ScaledEmbedding, HEncLayer, MultiWrap, HDecLayer
|
26 |
+
|
27 |
+
|
28 |
+
class HTDemucs(nn.Module):
|
29 |
+
"""
|
30 |
+
Spectrogram and hybrid Demucs model.
|
31 |
+
The spectrogram model has the same structure as Demucs, except the first few layers are over the
|
32 |
+
frequency axis, until there is only 1 frequency, and then it moves to time convolutions.
|
33 |
+
Frequency layers can still access information across time steps thanks to the DConv residual.
|
34 |
+
|
35 |
+
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride
|
36 |
+
as the frequency branch and then the two are combined. The opposite happens in the decoder.
|
37 |
+
|
38 |
+
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]),
|
39 |
+
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on
|
40 |
+
Open Unmix implementation [Stoter et al. 2019].
|
41 |
+
|
42 |
+
The loss is always on the temporal domain, by backpropagating through the above
|
43 |
+
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks
|
44 |
+
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram
|
45 |
+
contribution, without changing the one from the waveform, which will lead to worse performance.
|
46 |
+
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve.
|
47 |
+
CaC on the other hand provides similar performance for hybrid, and works naturally with
|
48 |
+
hybrid models.
|
49 |
+
|
50 |
+
This model also uses frequency embeddings are used to improve efficiency on convolutions
|
51 |
+
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf).
|
52 |
+
|
53 |
+
Unlike classic Demucs, there is no resampling here, and normalization is always applied.
|
54 |
+
"""
|
55 |
+
|
56 |
+
@capture_init
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
sources,
|
60 |
+
# Channels
|
61 |
+
audio_channels=2,
|
62 |
+
channels=48,
|
63 |
+
channels_time=None,
|
64 |
+
growth=2,
|
65 |
+
# STFT
|
66 |
+
nfft=4096,
|
67 |
+
num_subbands=1,
|
68 |
+
wiener_iters=0,
|
69 |
+
end_iters=0,
|
70 |
+
wiener_residual=False,
|
71 |
+
cac=True,
|
72 |
+
# Main structure
|
73 |
+
depth=4,
|
74 |
+
rewrite=True,
|
75 |
+
# Frequency branch
|
76 |
+
multi_freqs=None,
|
77 |
+
multi_freqs_depth=3,
|
78 |
+
freq_emb=0.2,
|
79 |
+
emb_scale=10,
|
80 |
+
emb_smooth=True,
|
81 |
+
# Convolutions
|
82 |
+
kernel_size=8,
|
83 |
+
time_stride=2,
|
84 |
+
stride=4,
|
85 |
+
context=1,
|
86 |
+
context_enc=0,
|
87 |
+
# Normalization
|
88 |
+
norm_starts=4,
|
89 |
+
norm_groups=4,
|
90 |
+
# DConv residual branch
|
91 |
+
dconv_mode=1,
|
92 |
+
dconv_depth=2,
|
93 |
+
dconv_comp=8,
|
94 |
+
dconv_init=1e-3,
|
95 |
+
# Before the Transformer
|
96 |
+
bottom_channels=0,
|
97 |
+
# Transformer
|
98 |
+
t_layers=5,
|
99 |
+
t_emb="sin",
|
100 |
+
t_hidden_scale=4.0,
|
101 |
+
t_heads=8,
|
102 |
+
t_dropout=0.0,
|
103 |
+
t_max_positions=10000,
|
104 |
+
t_norm_in=True,
|
105 |
+
t_norm_in_group=False,
|
106 |
+
t_group_norm=False,
|
107 |
+
t_norm_first=True,
|
108 |
+
t_norm_out=True,
|
109 |
+
t_max_period=10000.0,
|
110 |
+
t_weight_decay=0.0,
|
111 |
+
t_lr=None,
|
112 |
+
t_layer_scale=True,
|
113 |
+
t_gelu=True,
|
114 |
+
t_weight_pos_embed=1.0,
|
115 |
+
t_sin_random_shift=0,
|
116 |
+
t_cape_mean_normalize=True,
|
117 |
+
t_cape_augment=True,
|
118 |
+
t_cape_glob_loc_scale=[5000.0, 1.0, 1.4],
|
119 |
+
t_sparse_self_attn=False,
|
120 |
+
t_sparse_cross_attn=False,
|
121 |
+
t_mask_type="diag",
|
122 |
+
t_mask_random_seed=42,
|
123 |
+
t_sparse_attn_window=500,
|
124 |
+
t_global_window=100,
|
125 |
+
t_sparsity=0.95,
|
126 |
+
t_auto_sparsity=False,
|
127 |
+
# ------ Particuliar parameters
|
128 |
+
t_cross_first=False,
|
129 |
+
# Weight init
|
130 |
+
rescale=0.1,
|
131 |
+
# Metadata
|
132 |
+
samplerate=44100,
|
133 |
+
segment=10,
|
134 |
+
use_train_segment=False,
|
135 |
+
):
|
136 |
+
"""
|
137 |
+
Args:
|
138 |
+
sources (list[str]): list of source names.
|
139 |
+
audio_channels (int): input/output audio channels.
|
140 |
+
channels (int): initial number of hidden channels.
|
141 |
+
channels_time: if not None, use a different `channels` value for the time branch.
|
142 |
+
growth: increase the number of hidden channels by this factor at each layer.
|
143 |
+
nfft: number of fft bins. Note that changing this require careful computation of
|
144 |
+
various shape parameters and will not work out of the box for hybrid models.
|
145 |
+
wiener_iters: when using Wiener filtering, number of iterations at test time.
|
146 |
+
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`.
|
147 |
+
wiener_residual: add residual source before wiener filtering.
|
148 |
+
cac: uses complex as channels, i.e. complex numbers are 2 channels each
|
149 |
+
in input and output. no further processing is done before ISTFT.
|
150 |
+
depth (int): number of layers in the encoder and in the decoder.
|
151 |
+
rewrite (bool): add 1x1 convolution to each layer.
|
152 |
+
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`.
|
153 |
+
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost
|
154 |
+
layers will be wrapped.
|
155 |
+
freq_emb: add frequency embedding after the first frequency layer if > 0,
|
156 |
+
the actual value controls the weight of the embedding.
|
157 |
+
emb_scale: equivalent to scaling the embedding learning rate
|
158 |
+
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies).
|
159 |
+
kernel_size: kernel_size for encoder and decoder layers.
|
160 |
+
stride: stride for encoder and decoder layers.
|
161 |
+
time_stride: stride for the final time layer, after the merge.
|
162 |
+
context: context for 1x1 conv in the decoder.
|
163 |
+
context_enc: context for 1x1 conv in the encoder.
|
164 |
+
norm_starts: layer at which group norm starts being used.
|
165 |
+
decoder layers are numbered in reverse order.
|
166 |
+
norm_groups: number of groups for group norm.
|
167 |
+
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
168 |
+
dconv_depth: depth of residual DConv branch.
|
169 |
+
dconv_comp: compression of DConv branch.
|
170 |
+
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
171 |
+
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
172 |
+
dconv_init: initial scale for the DConv branch LayerScale.
|
173 |
+
bottom_channels: if >0 it adds a linear layer (1x1 Conv) before and after the
|
174 |
+
transformer in order to change the number of channels
|
175 |
+
t_layers: number of layers in each branch (waveform and spec) of the transformer
|
176 |
+
t_emb: "sin", "cape" or "scaled"
|
177 |
+
t_hidden_scale: the hidden scale of the Feedforward parts of the transformer
|
178 |
+
for instance if C = 384 (the number of channels in the transformer) and
|
179 |
+
t_hidden_scale = 4.0 then the intermediate layer of the FFN has dimension
|
180 |
+
384 * 4 = 1536
|
181 |
+
t_heads: number of heads for the transformer
|
182 |
+
t_dropout: dropout in the transformer
|
183 |
+
t_max_positions: max_positions for the "scaled" positional embedding, only
|
184 |
+
useful if t_emb="scaled"
|
185 |
+
t_norm_in: (bool) norm before addinf positional embedding and getting into the
|
186 |
+
transformer layers
|
187 |
+
t_norm_in_group: (bool) if True while t_norm_in=True, the norm is on all the
|
188 |
+
timesteps (GroupNorm with group=1)
|
189 |
+
t_group_norm: (bool) if True, the norms of the Encoder Layers are on all the
|
190 |
+
timesteps (GroupNorm with group=1)
|
191 |
+
t_norm_first: (bool) if True the norm is before the attention and before the FFN
|
192 |
+
t_norm_out: (bool) if True, there is a GroupNorm (group=1) at the end of each layer
|
193 |
+
t_max_period: (float) denominator in the sinusoidal embedding expression
|
194 |
+
t_weight_decay: (float) weight decay for the transformer
|
195 |
+
t_lr: (float) specific learning rate for the transformer
|
196 |
+
t_layer_scale: (bool) Layer Scale for the transformer
|
197 |
+
t_gelu: (bool) activations of the transformer are GeLU if True, ReLU else
|
198 |
+
t_weight_pos_embed: (float) weighting of the positional embedding
|
199 |
+
t_cape_mean_normalize: (bool) if t_emb="cape", normalisation of positional embeddings
|
200 |
+
see: https://arxiv.org/abs/2106.03143
|
201 |
+
t_cape_augment: (bool) if t_emb="cape", must be True during training and False
|
202 |
+
during the inference, see: https://arxiv.org/abs/2106.03143
|
203 |
+
t_cape_glob_loc_scale: (list of 3 floats) if t_emb="cape", CAPE parameters
|
204 |
+
see: https://arxiv.org/abs/2106.03143
|
205 |
+
t_sparse_self_attn: (bool) if True, the self attentions are sparse
|
206 |
+
t_sparse_cross_attn: (bool) if True, the cross-attentions are sparse (don't use it
|
207 |
+
unless you designed really specific masks)
|
208 |
+
t_mask_type: (str) can be "diag", "jmask", "random", "global" or any combination
|
209 |
+
with '_' between: i.e. "diag_jmask_random" (note that this is permutation
|
210 |
+
invariant i.e. "diag_jmask_random" is equivalent to "jmask_random_diag")
|
211 |
+
t_mask_random_seed: (int) if "random" is in t_mask_type, controls the seed
|
212 |
+
that generated the random part of the mask
|
213 |
+
t_sparse_attn_window: (int) if "diag" is in t_mask_type, for a query (i), and
|
214 |
+
a key (j), the mask is True id |i-j|<=t_sparse_attn_window
|
215 |
+
t_global_window: (int) if "global" is in t_mask_type, mask[:t_global_window, :]
|
216 |
+
and mask[:, :t_global_window] will be True
|
217 |
+
t_sparsity: (float) if "random" is in t_mask_type, t_sparsity is the sparsity
|
218 |
+
level of the random part of the mask.
|
219 |
+
t_cross_first: (bool) if True cross attention is the first layer of the
|
220 |
+
transformer (False seems to be better)
|
221 |
+
rescale: weight rescaling trick
|
222 |
+
use_train_segment: (bool) if True, the actual size that is used during the
|
223 |
+
training is used during inference.
|
224 |
+
"""
|
225 |
+
super().__init__()
|
226 |
+
self.num_subbands = num_subbands
|
227 |
+
self.cac = cac
|
228 |
+
self.wiener_residual = wiener_residual
|
229 |
+
self.audio_channels = audio_channels
|
230 |
+
self.sources = sources
|
231 |
+
self.kernel_size = kernel_size
|
232 |
+
self.context = context
|
233 |
+
self.stride = stride
|
234 |
+
self.depth = depth
|
235 |
+
self.bottom_channels = bottom_channels
|
236 |
+
self.channels = channels
|
237 |
+
self.samplerate = samplerate
|
238 |
+
self.segment = segment
|
239 |
+
self.use_train_segment = use_train_segment
|
240 |
+
self.nfft = nfft
|
241 |
+
self.hop_length = nfft // 4
|
242 |
+
self.wiener_iters = wiener_iters
|
243 |
+
self.end_iters = end_iters
|
244 |
+
self.freq_emb = None
|
245 |
+
assert wiener_iters == end_iters
|
246 |
+
|
247 |
+
self.encoder = nn.ModuleList()
|
248 |
+
self.decoder = nn.ModuleList()
|
249 |
+
|
250 |
+
self.tencoder = nn.ModuleList()
|
251 |
+
self.tdecoder = nn.ModuleList()
|
252 |
+
|
253 |
+
chin = audio_channels
|
254 |
+
chin_z = chin # number of channels for the freq branch
|
255 |
+
if self.cac:
|
256 |
+
chin_z *= 2
|
257 |
+
if self.num_subbands > 1:
|
258 |
+
chin_z *= self.num_subbands
|
259 |
+
chout = channels_time or channels
|
260 |
+
chout_z = channels
|
261 |
+
freqs = nfft // 2
|
262 |
+
|
263 |
+
for index in range(depth):
|
264 |
+
norm = index >= norm_starts
|
265 |
+
freq = freqs > 1
|
266 |
+
stri = stride
|
267 |
+
ker = kernel_size
|
268 |
+
if not freq:
|
269 |
+
assert freqs == 1
|
270 |
+
ker = time_stride * 2
|
271 |
+
stri = time_stride
|
272 |
+
|
273 |
+
pad = True
|
274 |
+
last_freq = False
|
275 |
+
if freq and freqs <= kernel_size:
|
276 |
+
ker = freqs
|
277 |
+
pad = False
|
278 |
+
last_freq = True
|
279 |
+
|
280 |
+
kw = {
|
281 |
+
"kernel_size": ker,
|
282 |
+
"stride": stri,
|
283 |
+
"freq": freq,
|
284 |
+
"pad": pad,
|
285 |
+
"norm": norm,
|
286 |
+
"rewrite": rewrite,
|
287 |
+
"norm_groups": norm_groups,
|
288 |
+
"dconv_kw": {
|
289 |
+
"depth": dconv_depth,
|
290 |
+
"compress": dconv_comp,
|
291 |
+
"init": dconv_init,
|
292 |
+
"gelu": True,
|
293 |
+
},
|
294 |
+
}
|
295 |
+
kwt = dict(kw)
|
296 |
+
kwt["freq"] = 0
|
297 |
+
kwt["kernel_size"] = kernel_size
|
298 |
+
kwt["stride"] = stride
|
299 |
+
kwt["pad"] = True
|
300 |
+
kw_dec = dict(kw)
|
301 |
+
multi = False
|
302 |
+
if multi_freqs and index < multi_freqs_depth:
|
303 |
+
multi = True
|
304 |
+
kw_dec["context_freq"] = False
|
305 |
+
|
306 |
+
if last_freq:
|
307 |
+
chout_z = max(chout, chout_z)
|
308 |
+
chout = chout_z
|
309 |
+
|
310 |
+
enc = HEncLayer(
|
311 |
+
chin_z, chout_z, dconv=dconv_mode & 1, context=context_enc, **kw
|
312 |
+
)
|
313 |
+
if freq:
|
314 |
+
tenc = HEncLayer(
|
315 |
+
chin,
|
316 |
+
chout,
|
317 |
+
dconv=dconv_mode & 1,
|
318 |
+
context=context_enc,
|
319 |
+
empty=last_freq,
|
320 |
+
**kwt
|
321 |
+
)
|
322 |
+
self.tencoder.append(tenc)
|
323 |
+
|
324 |
+
if multi:
|
325 |
+
enc = MultiWrap(enc, multi_freqs)
|
326 |
+
self.encoder.append(enc)
|
327 |
+
if index == 0:
|
328 |
+
chin = self.audio_channels * len(self.sources)
|
329 |
+
chin_z = chin
|
330 |
+
if self.cac:
|
331 |
+
chin_z *= 2
|
332 |
+
if self.num_subbands > 1:
|
333 |
+
chin_z *= self.num_subbands
|
334 |
+
dec = HDecLayer(
|
335 |
+
chout_z,
|
336 |
+
chin_z,
|
337 |
+
dconv=dconv_mode & 2,
|
338 |
+
last=index == 0,
|
339 |
+
context=context,
|
340 |
+
**kw_dec
|
341 |
+
)
|
342 |
+
if multi:
|
343 |
+
dec = MultiWrap(dec, multi_freqs)
|
344 |
+
if freq:
|
345 |
+
tdec = HDecLayer(
|
346 |
+
chout,
|
347 |
+
chin,
|
348 |
+
dconv=dconv_mode & 2,
|
349 |
+
empty=last_freq,
|
350 |
+
last=index == 0,
|
351 |
+
context=context,
|
352 |
+
**kwt
|
353 |
+
)
|
354 |
+
self.tdecoder.insert(0, tdec)
|
355 |
+
self.decoder.insert(0, dec)
|
356 |
+
|
357 |
+
chin = chout
|
358 |
+
chin_z = chout_z
|
359 |
+
chout = int(growth * chout)
|
360 |
+
chout_z = int(growth * chout_z)
|
361 |
+
if freq:
|
362 |
+
if freqs <= kernel_size:
|
363 |
+
freqs = 1
|
364 |
+
else:
|
365 |
+
freqs //= stride
|
366 |
+
if index == 0 and freq_emb:
|
367 |
+
self.freq_emb = ScaledEmbedding(
|
368 |
+
freqs, chin_z, smooth=emb_smooth, scale=emb_scale
|
369 |
+
)
|
370 |
+
self.freq_emb_scale = freq_emb
|
371 |
+
|
372 |
+
if rescale:
|
373 |
+
rescale_module(self, reference=rescale)
|
374 |
+
|
375 |
+
transformer_channels = channels * growth ** (depth - 1)
|
376 |
+
if bottom_channels:
|
377 |
+
self.channel_upsampler = nn.Conv1d(transformer_channels, bottom_channels, 1)
|
378 |
+
self.channel_downsampler = nn.Conv1d(
|
379 |
+
bottom_channels, transformer_channels, 1
|
380 |
+
)
|
381 |
+
self.channel_upsampler_t = nn.Conv1d(
|
382 |
+
transformer_channels, bottom_channels, 1
|
383 |
+
)
|
384 |
+
self.channel_downsampler_t = nn.Conv1d(
|
385 |
+
bottom_channels, transformer_channels, 1
|
386 |
+
)
|
387 |
+
|
388 |
+
transformer_channels = bottom_channels
|
389 |
+
|
390 |
+
if t_layers > 0:
|
391 |
+
self.crosstransformer = CrossTransformerEncoder(
|
392 |
+
dim=transformer_channels,
|
393 |
+
emb=t_emb,
|
394 |
+
hidden_scale=t_hidden_scale,
|
395 |
+
num_heads=t_heads,
|
396 |
+
num_layers=t_layers,
|
397 |
+
cross_first=t_cross_first,
|
398 |
+
dropout=t_dropout,
|
399 |
+
max_positions=t_max_positions,
|
400 |
+
norm_in=t_norm_in,
|
401 |
+
norm_in_group=t_norm_in_group,
|
402 |
+
group_norm=t_group_norm,
|
403 |
+
norm_first=t_norm_first,
|
404 |
+
norm_out=t_norm_out,
|
405 |
+
max_period=t_max_period,
|
406 |
+
weight_decay=t_weight_decay,
|
407 |
+
lr=t_lr,
|
408 |
+
layer_scale=t_layer_scale,
|
409 |
+
gelu=t_gelu,
|
410 |
+
sin_random_shift=t_sin_random_shift,
|
411 |
+
weight_pos_embed=t_weight_pos_embed,
|
412 |
+
cape_mean_normalize=t_cape_mean_normalize,
|
413 |
+
cape_augment=t_cape_augment,
|
414 |
+
cape_glob_loc_scale=t_cape_glob_loc_scale,
|
415 |
+
sparse_self_attn=t_sparse_self_attn,
|
416 |
+
sparse_cross_attn=t_sparse_cross_attn,
|
417 |
+
mask_type=t_mask_type,
|
418 |
+
mask_random_seed=t_mask_random_seed,
|
419 |
+
sparse_attn_window=t_sparse_attn_window,
|
420 |
+
global_window=t_global_window,
|
421 |
+
sparsity=t_sparsity,
|
422 |
+
auto_sparsity=t_auto_sparsity,
|
423 |
+
)
|
424 |
+
else:
|
425 |
+
self.crosstransformer = None
|
426 |
+
|
427 |
+
def _spec(self, x):
|
428 |
+
hl = self.hop_length
|
429 |
+
nfft = self.nfft
|
430 |
+
x0 = x # noqa
|
431 |
+
|
432 |
+
# We re-pad the signal in order to keep the property
|
433 |
+
# that the size of the output is exactly the size of the input
|
434 |
+
# divided by the stride (here hop_length), when divisible.
|
435 |
+
# This is achieved by padding by 1/4th of the kernel size (here nfft).
|
436 |
+
# which is not supported by torch.stft.
|
437 |
+
# Having all convolution operations follow this convention allow to easily
|
438 |
+
# align the time and frequency branches later on.
|
439 |
+
assert hl == nfft // 4
|
440 |
+
le = int(math.ceil(x.shape[-1] / hl))
|
441 |
+
pad = hl // 2 * 3
|
442 |
+
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode="reflect")
|
443 |
+
|
444 |
+
z = spectro(x, nfft, hl)[..., :-1, :]
|
445 |
+
assert z.shape[-1] == le + 4, (z.shape, x.shape, le)
|
446 |
+
z = z[..., 2: 2 + le]
|
447 |
+
return z
|
448 |
+
|
449 |
+
def _ispec(self, z, length=None, scale=0):
|
450 |
+
hl = self.hop_length // (4**scale)
|
451 |
+
z = F.pad(z, (0, 0, 0, 1))
|
452 |
+
z = F.pad(z, (2, 2))
|
453 |
+
pad = hl // 2 * 3
|
454 |
+
le = hl * int(math.ceil(length / hl)) + 2 * pad
|
455 |
+
x = ispectro(z, hl, length=le)
|
456 |
+
x = x[..., pad: pad + length]
|
457 |
+
return x
|
458 |
+
|
459 |
+
def _magnitude(self, z):
|
460 |
+
# return the magnitude of the spectrogram, except when cac is True,
|
461 |
+
# in which case we just move the complex dimension to the channel one.
|
462 |
+
if self.cac:
|
463 |
+
B, C, Fr, T = z.shape
|
464 |
+
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
|
465 |
+
m = m.reshape(B, C * 2, Fr, T)
|
466 |
+
else:
|
467 |
+
m = z.abs()
|
468 |
+
return m
|
469 |
+
|
470 |
+
def _mask(self, z, m):
|
471 |
+
# Apply masking given the mixture spectrogram `z` and the estimated mask `m`.
|
472 |
+
# If `cac` is True, `m` is actually a full spectrogram and `z` is ignored.
|
473 |
+
niters = self.wiener_iters
|
474 |
+
if self.cac:
|
475 |
+
B, S, C, Fr, T = m.shape
|
476 |
+
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3)
|
477 |
+
out = torch.view_as_complex(out.contiguous())
|
478 |
+
return out
|
479 |
+
if self.training:
|
480 |
+
niters = self.end_iters
|
481 |
+
if niters < 0:
|
482 |
+
z = z[:, None]
|
483 |
+
return z / (1e-8 + z.abs()) * m
|
484 |
+
else:
|
485 |
+
return self._wiener(m, z, niters)
|
486 |
+
|
487 |
+
def _wiener(self, mag_out, mix_stft, niters):
|
488 |
+
# apply wiener filtering from OpenUnmix.
|
489 |
+
init = mix_stft.dtype
|
490 |
+
wiener_win_len = 300
|
491 |
+
residual = self.wiener_residual
|
492 |
+
|
493 |
+
B, S, C, Fq, T = mag_out.shape
|
494 |
+
mag_out = mag_out.permute(0, 4, 3, 2, 1)
|
495 |
+
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1))
|
496 |
+
|
497 |
+
outs = []
|
498 |
+
for sample in range(B):
|
499 |
+
pos = 0
|
500 |
+
out = []
|
501 |
+
for pos in range(0, T, wiener_win_len):
|
502 |
+
frame = slice(pos, pos + wiener_win_len)
|
503 |
+
z_out = wiener(
|
504 |
+
mag_out[sample, frame],
|
505 |
+
mix_stft[sample, frame],
|
506 |
+
niters,
|
507 |
+
residual=residual,
|
508 |
+
)
|
509 |
+
out.append(z_out.transpose(-1, -2))
|
510 |
+
outs.append(torch.cat(out, dim=0))
|
511 |
+
out = torch.view_as_complex(torch.stack(outs, 0))
|
512 |
+
out = out.permute(0, 4, 3, 2, 1).contiguous()
|
513 |
+
if residual:
|
514 |
+
out = out[:, :-1]
|
515 |
+
assert list(out.shape) == [B, S, C, Fq, T]
|
516 |
+
return out.to(init)
|
517 |
+
|
518 |
+
def valid_length(self, length: int):
|
519 |
+
"""
|
520 |
+
Return a length that is appropriate for evaluation.
|
521 |
+
In our case, always return the training length, unless
|
522 |
+
it is smaller than the given length, in which case this
|
523 |
+
raises an error.
|
524 |
+
"""
|
525 |
+
if not self.use_train_segment:
|
526 |
+
return length
|
527 |
+
training_length = int(self.segment * self.samplerate)
|
528 |
+
if training_length < length:
|
529 |
+
raise ValueError(
|
530 |
+
f"Given length {length} is longer than "
|
531 |
+
f"training length {training_length}")
|
532 |
+
return training_length
|
533 |
+
|
534 |
+
def cac2cws(self, x):
|
535 |
+
k = self.num_subbands
|
536 |
+
b, c, f, t = x.shape
|
537 |
+
x = x.reshape(b, c, k, f // k, t)
|
538 |
+
x = x.reshape(b, c * k, f // k, t)
|
539 |
+
return x
|
540 |
+
|
541 |
+
def cws2cac(self, x):
|
542 |
+
k = self.num_subbands
|
543 |
+
b, c, f, t = x.shape
|
544 |
+
x = x.reshape(b, c // k, k, f, t)
|
545 |
+
x = x.reshape(b, c // k, f * k, t)
|
546 |
+
return x
|
547 |
+
|
548 |
+
def forward(self, mix):
|
549 |
+
length = mix.shape[-1]
|
550 |
+
length_pre_pad = None
|
551 |
+
if self.use_train_segment:
|
552 |
+
if self.training:
|
553 |
+
self.segment = Fraction(mix.shape[-1], self.samplerate)
|
554 |
+
else:
|
555 |
+
training_length = int(self.segment * self.samplerate)
|
556 |
+
# print('Training length: {} Segment: {} Sample rate: {}'.format(training_length, self.segment, self.samplerate))
|
557 |
+
if mix.shape[-1] < training_length:
|
558 |
+
length_pre_pad = mix.shape[-1]
|
559 |
+
mix = F.pad(mix, (0, training_length - length_pre_pad))
|
560 |
+
# print("Mix: {}".format(mix.shape))
|
561 |
+
# print("Length: {}".format(length))
|
562 |
+
z = self._spec(mix)
|
563 |
+
# print("Z: {} Type: {}".format(z.shape, z.dtype))
|
564 |
+
mag = self._magnitude(z)
|
565 |
+
x = mag
|
566 |
+
# print("MAG: {} Type: {}".format(x.shape, x.dtype))
|
567 |
+
|
568 |
+
if self.num_subbands > 1:
|
569 |
+
x = self.cac2cws(x)
|
570 |
+
# print("After SUBBANDS: {} Type: {}".format(x.shape, x.dtype))
|
571 |
+
|
572 |
+
B, C, Fq, T = x.shape
|
573 |
+
|
574 |
+
# unlike previous Demucs, we always normalize because it is easier.
|
575 |
+
mean = x.mean(dim=(1, 2, 3), keepdim=True)
|
576 |
+
std = x.std(dim=(1, 2, 3), keepdim=True)
|
577 |
+
x = (x - mean) / (1e-5 + std)
|
578 |
+
# x will be the freq. branch input.
|
579 |
+
|
580 |
+
# Prepare the time branch input.
|
581 |
+
xt = mix
|
582 |
+
meant = xt.mean(dim=(1, 2), keepdim=True)
|
583 |
+
stdt = xt.std(dim=(1, 2), keepdim=True)
|
584 |
+
xt = (xt - meant) / (1e-5 + stdt)
|
585 |
+
|
586 |
+
# print("XT: {}".format(xt.shape))
|
587 |
+
|
588 |
+
# okay, this is a giant mess I know...
|
589 |
+
saved = [] # skip connections, freq.
|
590 |
+
saved_t = [] # skip connections, time.
|
591 |
+
lengths = [] # saved lengths to properly remove padding, freq branch.
|
592 |
+
lengths_t = [] # saved lengths for time branch.
|
593 |
+
for idx, encode in enumerate(self.encoder):
|
594 |
+
lengths.append(x.shape[-1])
|
595 |
+
inject = None
|
596 |
+
if idx < len(self.tencoder):
|
597 |
+
# we have not yet merged branches.
|
598 |
+
lengths_t.append(xt.shape[-1])
|
599 |
+
tenc = self.tencoder[idx]
|
600 |
+
xt = tenc(xt)
|
601 |
+
# print("Encode XT {}: {}".format(idx, xt.shape))
|
602 |
+
if not tenc.empty:
|
603 |
+
# save for skip connection
|
604 |
+
saved_t.append(xt)
|
605 |
+
else:
|
606 |
+
# tenc contains just the first conv., so that now time and freq.
|
607 |
+
# branches have the same shape and can be merged.
|
608 |
+
inject = xt
|
609 |
+
x = encode(x, inject)
|
610 |
+
# print("Encode X {}: {}".format(idx, x.shape))
|
611 |
+
if idx == 0 and self.freq_emb is not None:
|
612 |
+
# add frequency embedding to allow for non equivariant convolutions
|
613 |
+
# over the frequency axis.
|
614 |
+
frs = torch.arange(x.shape[-2], device=x.device)
|
615 |
+
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
|
616 |
+
x = x + self.freq_emb_scale * emb
|
617 |
+
|
618 |
+
saved.append(x)
|
619 |
+
if self.crosstransformer:
|
620 |
+
if self.bottom_channels:
|
621 |
+
b, c, f, t = x.shape
|
622 |
+
x = rearrange(x, "b c f t-> b c (f t)")
|
623 |
+
x = self.channel_upsampler(x)
|
624 |
+
x = rearrange(x, "b c (f t)-> b c f t", f=f)
|
625 |
+
xt = self.channel_upsampler_t(xt)
|
626 |
+
|
627 |
+
x, xt = self.crosstransformer(x, xt)
|
628 |
+
# print("Cross Tran X {}, XT: {}".format(x.shape, xt.shape))
|
629 |
+
|
630 |
+
if self.bottom_channels:
|
631 |
+
x = rearrange(x, "b c f t-> b c (f t)")
|
632 |
+
x = self.channel_downsampler(x)
|
633 |
+
x = rearrange(x, "b c (f t)-> b c f t", f=f)
|
634 |
+
xt = self.channel_downsampler_t(xt)
|
635 |
+
|
636 |
+
for idx, decode in enumerate(self.decoder):
|
637 |
+
skip = saved.pop(-1)
|
638 |
+
x, pre = decode(x, skip, lengths.pop(-1))
|
639 |
+
# print('Decode {} X: {}'.format(idx, x.shape))
|
640 |
+
# `pre` contains the output just before final transposed convolution,
|
641 |
+
# which is used when the freq. and time branch separate.
|
642 |
+
|
643 |
+
offset = self.depth - len(self.tdecoder)
|
644 |
+
if idx >= offset:
|
645 |
+
tdec = self.tdecoder[idx - offset]
|
646 |
+
length_t = lengths_t.pop(-1)
|
647 |
+
if tdec.empty:
|
648 |
+
assert pre.shape[2] == 1, pre.shape
|
649 |
+
pre = pre[:, :, 0]
|
650 |
+
xt, _ = tdec(pre, None, length_t)
|
651 |
+
else:
|
652 |
+
skip = saved_t.pop(-1)
|
653 |
+
xt, _ = tdec(xt, skip, length_t)
|
654 |
+
# print('Decode {} XT: {}'.format(idx, xt.shape))
|
655 |
+
|
656 |
+
# Let's make sure we used all stored skip connections.
|
657 |
+
assert len(saved) == 0
|
658 |
+
assert len(lengths_t) == 0
|
659 |
+
assert len(saved_t) == 0
|
660 |
+
|
661 |
+
S = len(self.sources)
|
662 |
+
|
663 |
+
if self.num_subbands > 1:
|
664 |
+
x = x.view(B, -1, Fq, T)
|
665 |
+
# print("X view 1: {}".format(x.shape))
|
666 |
+
x = self.cws2cac(x)
|
667 |
+
# print("X view 2: {}".format(x.shape))
|
668 |
+
|
669 |
+
x = x.view(B, S, -1, Fq * self.num_subbands, T)
|
670 |
+
x = x * std[:, None] + mean[:, None]
|
671 |
+
# print("X returned: {}".format(x.shape))
|
672 |
+
|
673 |
+
zout = self._mask(z, x)
|
674 |
+
if self.use_train_segment:
|
675 |
+
if self.training:
|
676 |
+
x = self._ispec(zout, length)
|
677 |
+
else:
|
678 |
+
x = self._ispec(zout, training_length)
|
679 |
+
else:
|
680 |
+
x = self._ispec(zout, length)
|
681 |
+
|
682 |
+
if self.use_train_segment:
|
683 |
+
if self.training:
|
684 |
+
xt = xt.view(B, S, -1, length)
|
685 |
+
else:
|
686 |
+
xt = xt.view(B, S, -1, training_length)
|
687 |
+
else:
|
688 |
+
xt = xt.view(B, S, -1, length)
|
689 |
+
xt = xt * stdt[:, None] + meant[:, None]
|
690 |
+
x = xt + x
|
691 |
+
if length_pre_pad:
|
692 |
+
x = x[..., :length_pre_pad]
|
693 |
+
return x
|
694 |
+
|
695 |
+
|
696 |
+
def get_model(args):
|
697 |
+
extra = {
|
698 |
+
'sources': list(args.training.instruments),
|
699 |
+
'audio_channels': args.training.channels,
|
700 |
+
'samplerate': args.training.samplerate,
|
701 |
+
# 'segment': args.model_segment or 4 * args.dset.segment,
|
702 |
+
'segment': args.training.segment,
|
703 |
+
}
|
704 |
+
klass = {
|
705 |
+
'demucs': Demucs,
|
706 |
+
'hdemucs': HDemucs,
|
707 |
+
'htdemucs': HTDemucs,
|
708 |
+
}[args.model]
|
709 |
+
kw = OmegaConf.to_container(getattr(args, args.model), resolve=True)
|
710 |
+
model = klass(**extra, **kw)
|
711 |
+
return model
|
712 |
+
|
713 |
+
|
models/scnet/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .scnet import SCNet
|
models/scnet/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (219 Bytes). View file
|
|
models/scnet/__pycache__/scnet.cpython-311.pyc
ADDED
Binary file (20.7 kB). View file
|
|
models/scnet/__pycache__/separation.cpython-311.pyc
ADDED
Binary file (8.43 kB). View file
|
|
models/scnet/scnet.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from collections import deque
|
5 |
+
from .separation import SeparationNet
|
6 |
+
import typing as tp
|
7 |
+
import math
|
8 |
+
|
9 |
+
|
10 |
+
class Swish(nn.Module):
|
11 |
+
def forward(self, x):
|
12 |
+
return x * x.sigmoid()
|
13 |
+
|
14 |
+
|
15 |
+
class ConvolutionModule(nn.Module):
|
16 |
+
"""
|
17 |
+
Convolution Module in SD block.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
channels (int): input/output channels.
|
21 |
+
depth (int): number of layers in the residual branch. Each layer has its own
|
22 |
+
compress (float): amount of channel compression.
|
23 |
+
kernel (int): kernel size for the convolutions.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, channels, depth=2, compress=4, kernel=3):
|
27 |
+
super().__init__()
|
28 |
+
assert kernel % 2 == 1
|
29 |
+
self.depth = abs(depth)
|
30 |
+
hidden_size = int(channels / compress)
|
31 |
+
norm = lambda d: nn.GroupNorm(1, d)
|
32 |
+
self.layers = nn.ModuleList([])
|
33 |
+
for _ in range(self.depth):
|
34 |
+
padding = (kernel // 2)
|
35 |
+
mods = [
|
36 |
+
norm(channels),
|
37 |
+
nn.Conv1d(channels, hidden_size * 2, kernel, padding=padding),
|
38 |
+
nn.GLU(1),
|
39 |
+
nn.Conv1d(hidden_size, hidden_size, kernel, padding=padding, groups=hidden_size),
|
40 |
+
norm(hidden_size),
|
41 |
+
Swish(),
|
42 |
+
nn.Conv1d(hidden_size, channels, 1),
|
43 |
+
]
|
44 |
+
layer = nn.Sequential(*mods)
|
45 |
+
self.layers.append(layer)
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
for layer in self.layers:
|
49 |
+
x = x + layer(x)
|
50 |
+
return x
|
51 |
+
|
52 |
+
|
53 |
+
class FusionLayer(nn.Module):
|
54 |
+
"""
|
55 |
+
A FusionLayer within the decoder.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
- channels (int): Number of input channels.
|
59 |
+
- kernel_size (int, optional): Kernel size for the convolutional layer, defaults to 3.
|
60 |
+
- stride (int, optional): Stride for the convolutional layer, defaults to 1.
|
61 |
+
- padding (int, optional): Padding for the convolutional layer, defaults to 1.
|
62 |
+
"""
|
63 |
+
|
64 |
+
def __init__(self, channels, kernel_size=3, stride=1, padding=1):
|
65 |
+
super(FusionLayer, self).__init__()
|
66 |
+
self.conv = nn.Conv2d(channels * 2, channels * 2, kernel_size, stride=stride, padding=padding)
|
67 |
+
|
68 |
+
def forward(self, x, skip=None):
|
69 |
+
if skip is not None:
|
70 |
+
x += skip
|
71 |
+
x = x.repeat(1, 2, 1, 1)
|
72 |
+
x = self.conv(x)
|
73 |
+
x = F.glu(x, dim=1)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class SDlayer(nn.Module):
|
78 |
+
"""
|
79 |
+
Implements a Sparse Down-sample Layer for processing different frequency bands separately.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
- channels_in (int): Input channel count.
|
83 |
+
- channels_out (int): Output channel count.
|
84 |
+
- band_configs (dict): A dictionary containing configuration for each frequency band.
|
85 |
+
Keys are 'low', 'mid', 'high' for each band, and values are
|
86 |
+
dictionaries with keys 'SR', 'stride', and 'kernel' for proportion,
|
87 |
+
stride, and kernel size, respectively.
|
88 |
+
"""
|
89 |
+
|
90 |
+
def __init__(self, channels_in, channels_out, band_configs):
|
91 |
+
super(SDlayer, self).__init__()
|
92 |
+
|
93 |
+
# Initializing convolutional layers for each band
|
94 |
+
self.convs = nn.ModuleList()
|
95 |
+
self.strides = []
|
96 |
+
self.kernels = []
|
97 |
+
for config in band_configs.values():
|
98 |
+
self.convs.append(
|
99 |
+
nn.Conv2d(channels_in, channels_out, (config['kernel'], 1), (config['stride'], 1), (0, 0)))
|
100 |
+
self.strides.append(config['stride'])
|
101 |
+
self.kernels.append(config['kernel'])
|
102 |
+
|
103 |
+
# Saving rate proportions for determining splits
|
104 |
+
self.SR_low = band_configs['low']['SR']
|
105 |
+
self.SR_mid = band_configs['mid']['SR']
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
B, C, Fr, T = x.shape
|
109 |
+
# Define splitting points based on sampling rates
|
110 |
+
splits = [
|
111 |
+
(0, math.ceil(Fr * self.SR_low)),
|
112 |
+
(math.ceil(Fr * self.SR_low), math.ceil(Fr * (self.SR_low + self.SR_mid))),
|
113 |
+
(math.ceil(Fr * (self.SR_low + self.SR_mid)), Fr)
|
114 |
+
]
|
115 |
+
|
116 |
+
# Processing each band with the corresponding convolution
|
117 |
+
outputs = []
|
118 |
+
original_lengths = []
|
119 |
+
for conv, stride, kernel, (start, end) in zip(self.convs, self.strides, self.kernels, splits):
|
120 |
+
extracted = x[:, :, start:end, :]
|
121 |
+
original_lengths.append(end - start)
|
122 |
+
current_length = extracted.shape[2]
|
123 |
+
|
124 |
+
# padding
|
125 |
+
if stride == 1:
|
126 |
+
total_padding = kernel - stride
|
127 |
+
else:
|
128 |
+
total_padding = (stride - current_length % stride) % stride
|
129 |
+
pad_left = total_padding // 2
|
130 |
+
pad_right = total_padding - pad_left
|
131 |
+
|
132 |
+
padded = F.pad(extracted, (0, 0, pad_left, pad_right))
|
133 |
+
|
134 |
+
output = conv(padded)
|
135 |
+
outputs.append(output)
|
136 |
+
|
137 |
+
return outputs, original_lengths
|
138 |
+
|
139 |
+
|
140 |
+
class SUlayer(nn.Module):
|
141 |
+
"""
|
142 |
+
Implements a Sparse Up-sample Layer in decoder.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
- channels_in: The number of input channels.
|
146 |
+
- channels_out: The number of output channels.
|
147 |
+
- convtr_configs: Dictionary containing the configurations for transposed convolutions.
|
148 |
+
"""
|
149 |
+
|
150 |
+
def __init__(self, channels_in, channels_out, band_configs):
|
151 |
+
super(SUlayer, self).__init__()
|
152 |
+
|
153 |
+
# Initializing convolutional layers for each band
|
154 |
+
self.convtrs = nn.ModuleList([
|
155 |
+
nn.ConvTranspose2d(channels_in, channels_out, [config['kernel'], 1], [config['stride'], 1])
|
156 |
+
for _, config in band_configs.items()
|
157 |
+
])
|
158 |
+
|
159 |
+
def forward(self, x, lengths, origin_lengths):
|
160 |
+
B, C, Fr, T = x.shape
|
161 |
+
# Define splitting points based on input lengths
|
162 |
+
splits = [
|
163 |
+
(0, lengths[0]),
|
164 |
+
(lengths[0], lengths[0] + lengths[1]),
|
165 |
+
(lengths[0] + lengths[1], None)
|
166 |
+
]
|
167 |
+
# Processing each band with the corresponding convolution
|
168 |
+
outputs = []
|
169 |
+
for idx, (convtr, (start, end)) in enumerate(zip(self.convtrs, splits)):
|
170 |
+
out = convtr(x[:, :, start:end, :])
|
171 |
+
# Calculate the distance to trim the output symmetrically to original length
|
172 |
+
current_Fr_length = out.shape[2]
|
173 |
+
dist = abs(origin_lengths[idx] - current_Fr_length) // 2
|
174 |
+
|
175 |
+
# Trim the output to the original length symmetrically
|
176 |
+
trimmed_out = out[:, :, dist:dist + origin_lengths[idx], :]
|
177 |
+
|
178 |
+
outputs.append(trimmed_out)
|
179 |
+
|
180 |
+
# Concatenate trimmed outputs along the frequency dimension to return the final tensor
|
181 |
+
x = torch.cat(outputs, dim=2)
|
182 |
+
|
183 |
+
return x
|
184 |
+
|
185 |
+
|
186 |
+
class SDblock(nn.Module):
|
187 |
+
"""
|
188 |
+
Implements a simplified Sparse Down-sample block in encoder.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
- channels_in (int): Number of input channels.
|
192 |
+
- channels_out (int): Number of output channels.
|
193 |
+
- band_config (dict): Configuration for the SDlayer specifying band splits and convolutions.
|
194 |
+
- conv_config (dict): Configuration for convolution modules applied to each band.
|
195 |
+
- depths (list of int): List specifying the convolution depths for low, mid, and high frequency bands.
|
196 |
+
"""
|
197 |
+
|
198 |
+
def __init__(self, channels_in, channels_out, band_configs={}, conv_config={}, depths=[3, 2, 1], kernel_size=3):
|
199 |
+
super(SDblock, self).__init__()
|
200 |
+
self.SDlayer = SDlayer(channels_in, channels_out, band_configs)
|
201 |
+
|
202 |
+
# Dynamically create convolution modules for each band based on depths
|
203 |
+
self.conv_modules = nn.ModuleList([
|
204 |
+
ConvolutionModule(channels_out, depth, **conv_config) for depth in depths
|
205 |
+
])
|
206 |
+
# Set the kernel_size to an odd number.
|
207 |
+
self.globalconv = nn.Conv2d(channels_out, channels_out, kernel_size, 1, (kernel_size - 1) // 2)
|
208 |
+
|
209 |
+
def forward(self, x):
|
210 |
+
bands, original_lengths = self.SDlayer(x)
|
211 |
+
# B, C, f, T = band.shape
|
212 |
+
bands = [
|
213 |
+
F.gelu(
|
214 |
+
conv(band.permute(0, 2, 1, 3).reshape(-1, band.shape[1], band.shape[3]))
|
215 |
+
.view(band.shape[0], band.shape[2], band.shape[1], band.shape[3])
|
216 |
+
.permute(0, 2, 1, 3)
|
217 |
+
)
|
218 |
+
for conv, band in zip(self.conv_modules, bands)
|
219 |
+
|
220 |
+
]
|
221 |
+
lengths = [band.size(-2) for band in bands]
|
222 |
+
full_band = torch.cat(bands, dim=2)
|
223 |
+
skip = full_band
|
224 |
+
|
225 |
+
output = self.globalconv(full_band)
|
226 |
+
|
227 |
+
return output, skip, lengths, original_lengths
|
228 |
+
|
229 |
+
|
230 |
+
class SCNet(nn.Module):
|
231 |
+
"""
|
232 |
+
The implementation of SCNet: Sparse Compression Network for Music Source Separation. Paper: https://arxiv.org/abs/2401.13276.pdf
|
233 |
+
|
234 |
+
Args:
|
235 |
+
- sources (List[str]): List of sources to be separated.
|
236 |
+
- audio_channels (int): Number of audio channels.
|
237 |
+
- nfft (int): Number of FFTs to determine the frequency dimension of the input.
|
238 |
+
- hop_size (int): Hop size for the STFT.
|
239 |
+
- win_size (int): Window size for STFT.
|
240 |
+
- normalized (bool): Whether to normalize the STFT.
|
241 |
+
- dims (List[int]): List of channel dimensions for each block.
|
242 |
+
- band_SR (List[float]): The proportion of each frequency band.
|
243 |
+
- band_stride (List[int]): The down-sampling ratio of each frequency band.
|
244 |
+
- band_kernel (List[int]): The kernel sizes for down-sampling convolution in each frequency band
|
245 |
+
- conv_depths (List[int]): List specifying the number of convolution modules in each SD block.
|
246 |
+
- compress (int): Compression factor for convolution module.
|
247 |
+
- conv_kernel (int): Kernel size for convolution layer in convolution module.
|
248 |
+
- num_dplayer (int): Number of dual-path layers.
|
249 |
+
- expand (int): Expansion factor in the dual-path RNN, default is 1.
|
250 |
+
|
251 |
+
"""
|
252 |
+
|
253 |
+
def __init__(self,
|
254 |
+
sources=['drums', 'bass', 'other', 'vocals'],
|
255 |
+
audio_channels=2,
|
256 |
+
# Main structure
|
257 |
+
dims=[4, 32, 64, 128], # dims = [4, 64, 128, 256] in SCNet-large
|
258 |
+
# STFT
|
259 |
+
nfft=4096,
|
260 |
+
hop_size=1024,
|
261 |
+
win_size=4096,
|
262 |
+
normalized=True,
|
263 |
+
# SD/SU layer
|
264 |
+
band_SR=[0.175, 0.392, 0.433],
|
265 |
+
band_stride=[1, 4, 16],
|
266 |
+
band_kernel=[3, 4, 16],
|
267 |
+
# Convolution Module
|
268 |
+
conv_depths=[3, 2, 1],
|
269 |
+
compress=4,
|
270 |
+
conv_kernel=3,
|
271 |
+
# Dual-path RNN
|
272 |
+
num_dplayer=6,
|
273 |
+
expand=1,
|
274 |
+
):
|
275 |
+
super().__init__()
|
276 |
+
self.sources = sources
|
277 |
+
self.audio_channels = audio_channels
|
278 |
+
self.dims = dims
|
279 |
+
band_keys = ['low', 'mid', 'high']
|
280 |
+
self.band_configs = {band_keys[i]: {'SR': band_SR[i], 'stride': band_stride[i], 'kernel': band_kernel[i]} for i
|
281 |
+
in range(len(band_keys))}
|
282 |
+
self.hop_length = hop_size
|
283 |
+
self.conv_config = {
|
284 |
+
'compress': compress,
|
285 |
+
'kernel': conv_kernel,
|
286 |
+
}
|
287 |
+
|
288 |
+
self.stft_config = {
|
289 |
+
'n_fft': nfft,
|
290 |
+
'hop_length': hop_size,
|
291 |
+
'win_length': win_size,
|
292 |
+
'center': True,
|
293 |
+
'normalized': normalized
|
294 |
+
}
|
295 |
+
|
296 |
+
self.encoder = nn.ModuleList()
|
297 |
+
self.decoder = nn.ModuleList()
|
298 |
+
|
299 |
+
for index in range(len(dims) - 1):
|
300 |
+
enc = SDblock(
|
301 |
+
channels_in=dims[index],
|
302 |
+
channels_out=dims[index + 1],
|
303 |
+
band_configs=self.band_configs,
|
304 |
+
conv_config=self.conv_config,
|
305 |
+
depths=conv_depths
|
306 |
+
)
|
307 |
+
self.encoder.append(enc)
|
308 |
+
|
309 |
+
dec = nn.Sequential(
|
310 |
+
FusionLayer(channels=dims[index + 1]),
|
311 |
+
SUlayer(
|
312 |
+
channels_in=dims[index + 1],
|
313 |
+
channels_out=dims[index] if index != 0 else dims[index] * len(sources),
|
314 |
+
band_configs=self.band_configs,
|
315 |
+
)
|
316 |
+
)
|
317 |
+
self.decoder.insert(0, dec)
|
318 |
+
|
319 |
+
self.separation_net = SeparationNet(
|
320 |
+
channels=dims[-1],
|
321 |
+
expand=expand,
|
322 |
+
num_layers=num_dplayer,
|
323 |
+
)
|
324 |
+
|
325 |
+
def forward(self, x):
|
326 |
+
# B, C, L = x.shape
|
327 |
+
B = x.shape[0]
|
328 |
+
# In the initial padding, ensure that the number of frames after the STFT (the length of the T dimension) is even,
|
329 |
+
# so that the RFFT operation can be used in the separation network.
|
330 |
+
padding = self.hop_length - x.shape[-1] % self.hop_length
|
331 |
+
if (x.shape[-1] + padding) // self.hop_length % 2 == 0:
|
332 |
+
padding += self.hop_length
|
333 |
+
x = F.pad(x, (0, padding))
|
334 |
+
|
335 |
+
# STFT
|
336 |
+
L = x.shape[-1]
|
337 |
+
x = x.reshape(-1, L)
|
338 |
+
x = torch.stft(x, **self.stft_config, return_complex=True)
|
339 |
+
x = torch.view_as_real(x)
|
340 |
+
x = x.permute(0, 3, 1, 2).reshape(x.shape[0] // self.audio_channels, x.shape[3] * self.audio_channels,
|
341 |
+
x.shape[1], x.shape[2])
|
342 |
+
|
343 |
+
B, C, Fr, T = x.shape
|
344 |
+
|
345 |
+
save_skip = deque()
|
346 |
+
save_lengths = deque()
|
347 |
+
save_original_lengths = deque()
|
348 |
+
# encoder
|
349 |
+
for sd_layer in self.encoder:
|
350 |
+
x, skip, lengths, original_lengths = sd_layer(x)
|
351 |
+
save_skip.append(skip)
|
352 |
+
save_lengths.append(lengths)
|
353 |
+
save_original_lengths.append(original_lengths)
|
354 |
+
|
355 |
+
# separation
|
356 |
+
x = self.separation_net(x)
|
357 |
+
|
358 |
+
# decoder
|
359 |
+
for fusion_layer, su_layer in self.decoder:
|
360 |
+
x = fusion_layer(x, save_skip.pop())
|
361 |
+
x = su_layer(x, save_lengths.pop(), save_original_lengths.pop())
|
362 |
+
|
363 |
+
# output
|
364 |
+
n = self.dims[0]
|
365 |
+
x = x.view(B, n, -1, Fr, T)
|
366 |
+
x = x.reshape(-1, 2, Fr, T).permute(0, 2, 3, 1)
|
367 |
+
x = torch.view_as_complex(x.contiguous())
|
368 |
+
x = torch.istft(x, **self.stft_config)
|
369 |
+
x = x.reshape(B, len(self.sources), self.audio_channels, -1)
|
370 |
+
|
371 |
+
x = x[:, :, :, :-padding]
|
372 |
+
|
373 |
+
return x
|
models/scnet/separation.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn.modules.rnn import LSTM
|
4 |
+
|
5 |
+
|
6 |
+
class FeatureConversion(nn.Module):
|
7 |
+
"""
|
8 |
+
Integrates into the adjacent Dual-Path layer.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
channels (int): Number of input channels.
|
12 |
+
inverse (bool): If True, uses ifft; otherwise, uses rfft.
|
13 |
+
"""
|
14 |
+
|
15 |
+
def __init__(self, channels, inverse):
|
16 |
+
super().__init__()
|
17 |
+
self.inverse = inverse
|
18 |
+
self.channels = channels
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
# B, C, F, T = x.shape
|
22 |
+
if self.inverse:
|
23 |
+
x = x.float()
|
24 |
+
x_r = x[:, :self.channels // 2, :, :]
|
25 |
+
x_i = x[:, self.channels // 2:, :, :]
|
26 |
+
x = torch.complex(x_r, x_i)
|
27 |
+
x = torch.fft.irfft(x, dim=3, norm="ortho")
|
28 |
+
else:
|
29 |
+
x = x.float()
|
30 |
+
x = torch.fft.rfft(x, dim=3, norm="ortho")
|
31 |
+
x_real = x.real
|
32 |
+
x_imag = x.imag
|
33 |
+
x = torch.cat([x_real, x_imag], dim=1)
|
34 |
+
return x
|
35 |
+
|
36 |
+
|
37 |
+
class DualPathRNN(nn.Module):
|
38 |
+
"""
|
39 |
+
Dual-Path RNN in Separation Network.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
d_model (int): The number of expected features in the input (input_size).
|
43 |
+
expand (int): Expansion factor used to calculate the hidden_size of LSTM.
|
44 |
+
bidirectional (bool): If True, becomes a bidirectional LSTM.
|
45 |
+
"""
|
46 |
+
|
47 |
+
def __init__(self, d_model, expand, bidirectional=True):
|
48 |
+
super(DualPathRNN, self).__init__()
|
49 |
+
|
50 |
+
self.d_model = d_model
|
51 |
+
self.hidden_size = d_model * expand
|
52 |
+
self.bidirectional = bidirectional
|
53 |
+
# Initialize LSTM layers and normalization layers
|
54 |
+
self.lstm_layers = nn.ModuleList([self._init_lstm_layer(self.d_model, self.hidden_size) for _ in range(2)])
|
55 |
+
self.linear_layers = nn.ModuleList([nn.Linear(self.hidden_size * 2, self.d_model) for _ in range(2)])
|
56 |
+
self.norm_layers = nn.ModuleList([nn.GroupNorm(1, d_model) for _ in range(2)])
|
57 |
+
|
58 |
+
def _init_lstm_layer(self, d_model, hidden_size):
|
59 |
+
return LSTM(d_model, hidden_size, num_layers=1, bidirectional=self.bidirectional, batch_first=True)
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
B, C, F, T = x.shape
|
63 |
+
|
64 |
+
# Process dual-path rnn
|
65 |
+
original_x = x
|
66 |
+
# Frequency-path
|
67 |
+
x = self.norm_layers[0](x)
|
68 |
+
x = x.transpose(1, 3).contiguous().view(B * T, F, C)
|
69 |
+
x, _ = self.lstm_layers[0](x)
|
70 |
+
x = self.linear_layers[0](x)
|
71 |
+
x = x.view(B, T, F, C).transpose(1, 3)
|
72 |
+
x = x + original_x
|
73 |
+
|
74 |
+
original_x = x
|
75 |
+
# Time-path
|
76 |
+
x = self.norm_layers[1](x)
|
77 |
+
x = x.transpose(1, 2).contiguous().view(B * F, C, T).transpose(1, 2)
|
78 |
+
x, _ = self.lstm_layers[1](x)
|
79 |
+
x = self.linear_layers[1](x)
|
80 |
+
x = x.transpose(1, 2).contiguous().view(B, F, C, T).transpose(1, 2)
|
81 |
+
x = x + original_x
|
82 |
+
|
83 |
+
return x
|
84 |
+
|
85 |
+
|
86 |
+
class SeparationNet(nn.Module):
|
87 |
+
"""
|
88 |
+
Implements a simplified Sparse Down-sample block in an encoder architecture.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
- channels (int): Number input channels.
|
92 |
+
- expand (int): Expansion factor used to calculate the hidden_size of LSTM.
|
93 |
+
- num_layers (int): Number of dual-path layers.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, channels, expand=1, num_layers=6):
|
97 |
+
super(SeparationNet, self).__init__()
|
98 |
+
|
99 |
+
self.num_layers = num_layers
|
100 |
+
|
101 |
+
self.dp_modules = nn.ModuleList([
|
102 |
+
DualPathRNN(channels * (2 if i % 2 == 1 else 1), expand) for i in range(num_layers)
|
103 |
+
])
|
104 |
+
|
105 |
+
self.feature_conversion = nn.ModuleList([
|
106 |
+
FeatureConversion(channels * 2, inverse=False if i % 2 == 0 else True) for i in range(num_layers)
|
107 |
+
])
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
for i in range(self.num_layers):
|
111 |
+
x = self.dp_modules[i](x)
|
112 |
+
x = self.feature_conversion[i](x)
|
113 |
+
return x
|