Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,617 Bytes
889d37b 6e4be61 889d37b e6cc59c b16d370 6bd24ce e43bd3d 6bd24ce 757c094 6bd24ce 889d37b 757c094 889d37b e43bd3d 0b692c9 889d37b 757c094 dab1823 889d37b 757c094 889d37b b9d3d3a 757c094 be9631f 757c094 b9d3d3a 757c094 7a46bef b9d3d3a 757c094 b9d3d3a 757c094 b9d3d3a 757c094 b9d3d3a 757c094 b9d3d3a 757c094 b9d3d3a 6bd24ce 0b692c9 bbb11fa 0b692c9 4818984 0b692c9 4818984 e43bd3d 0b692c9 4818984 0b692c9 bbb11fa 0b692c9 4818984 0b692c9 4818984 0b692c9 4818984 e883a9a 757c094 a327849 757c094 0b692c9 757c094 e883a9a d34a5b4 0b692c9 a327849 6bd24ce dab1823 a327849 e883a9a ad69837 a327849 0b692c9 a327849 6e4be61 ad69837 7b3ac0c 889d37b 757c094 889d37b 757c094 889d37b 757c094 889d37b 757c094 889d37b 757c094 889d37b 757c094 889d37b 3bc754b 757c094 3bc754b 757c094 3bc754b 757c094 889d37b 5b88dac 889d37b 757c094 889d37b 757c094 889d37b 757c094 6e4be61 a327849 7e68a9b b16d370 a327849 b16d370 a327849 3bc754b a327849 3bc754b 889d37b 28bfd12 6e4be61 757c094 6e4be61 889d37b 757c094 889d37b 757c094 889d37b 757c094 889d37b 757c094 889d37b abd7f49 4818984 757c094 889d37b e883a9a ebb569b e883a9a 4818984 e883a9a e1ba51e 889d37b 757c094 889d37b ebb569b 889d37b 757c094 e883a9a 889d37b e883a9a 889d37b e883a9a 889d37b 757c094 889d37b be9631f 889d37b 28bfd12 889d37b 757c094 889d37b e883a9a 1f8480b be9631f e883a9a 889d37b 28bfd12 e883a9a 889d37b 4818984 889d37b ebb569b 757c094 889d37b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import yt_dlp
import re
import subprocess
import os
import shutil
from pydub import AudioSegment, silence
import gradio as gr
import traceback
import logging
from inference import proc_folder_direct
from pathlib import Path
import spaces
from pydub.exceptions import CouldntEncodeError
from transformers import pipeline
import requests
# Initialize text generation model
model = pipeline('text-generation', model='EleutherAI/gpt-neo-125M')
# Define constants
OUTPUT_FOLDER = "separation_results/"
INPUT_FOLDER = "input"
download_path = ""
# URL for the cookies.txt file in the Hugging Face repository
cookies_url = "https://huggingface.co/spaces/Awell00/music_drums_separation/raw/main/cookies.txt"
def download_cookies():
try:
response = requests.get(cookies_url)
response.raise_for_status() # Check for HTTP errors
# Write content to cookies.txt file in the Docker container
with open("cookies.txt", "w") as file:
file.write(response.text)
print("cookies.txt downloaded successfully.")
except requests.exceptions.RequestException as e:
print(f"Error downloading cookies.txt: {e}")
class MyLogger:
def debug(self, msg):
# For compatibility with youtube-dl, both debug and info are passed into debug
if msg.startswith('[debug] '):
pass
else:
self.info(msg)
def info(self, msg):
pass
def warning(self, msg):
pass
def error(self, msg):
print(msg)
def my_hook(d):
if d['status'] == 'finished':
print('Done downloading, now post-processing ...')
def sanitize_filename(filename):
"""
Remove special characters from filename to ensure it's valid across different file systems.
Args:
filename (str): The original filename
Returns:
str: Sanitized filename
"""
return re.sub(r'[\\/*?:"<>|]', '_', filename)
def delete_input_files(input_dir):
"""
Delete all WAV files in the input directory.
Args:
input_dir (str): Path to the input directory
"""
wav_dir = Path(input_dir) / "wav"
for wav_file in wav_dir.glob("*.wav"):
wav_file.unlink()
print(f"Deleted {wav_file}")
def standardize_title(input_title):
"""
Standardize the title format by removing unnecessary words and rearranging artist and title.
Args:
input_title (str): The original title
Returns:
str: Standardized title in "Artist - Title" format
"""
# Remove content within parentheses or brackets
title_cleaned = re.sub(r"[\(\[].*?[\)\]]", "", input_title)
# Remove unnecessary words
unnecessary_words = ["official", "video", "hd", "4k", "lyrics", "music", "audio", "visualizer", "remix", ""]
title_cleaned = re.sub(r"\b(?:{})\b".format("|".join(unnecessary_words)), "", title_cleaned, flags=re.IGNORECASE)
# Split title into parts
parts = re.split(r"\s*-\s*|\s*,\s*", title_cleaned)
# Determine artist and title parts
if len(parts) >= 2:
title_part = parts[-1].strip()
artist_part = ', '.join(parts[:-1]).strip()
else:
artist_part = "Unknown Artist"
title_part = title_cleaned.strip()
# Handle "with" or "feat" in the title
if "with" in input_title.lower() or "feat" in input_title.lower():
match = re.search(r"\((with|feat\.?) (.*?)\)", input_title, re.IGNORECASE)
if match:
additional_artist = match.group(2).strip()
artist_part = f"{artist_part}, {additional_artist}" if artist_part != "Unknown Artist" else additional_artist
# Clean up and capitalize
artist_part = re.sub(r'\s+', ' ', artist_part).title()
title_part = re.sub(r'\s+', ' ', title_part).title()
# Combine artist and title
standardized_output = f"{artist_part} - {title_part}"
return standardized_output.strip()
def get_video_title(video_url):
ydl_opts = {
'logger': MyLogger(),
'progress_hooks': [my_hook],
'cookiefile': 'cookies.txt',
'quiet': True,
'ratelimit': 500000,
'retries': 3,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
# Extract video info using the provided URL
video_info = ydl.extract_info(video_url, download=False)
# Get the video title
video_title = video_info['title'] # Get the video title
return video_title
def download_youtube_audio(youtube_url: str, output_dir: str = './download', delete_existing: bool = True, simulate: bool = False) -> str:
"""
Downloads audio from a YouTube URL and saves it as an MP3 file with specified yt-dlp options.
Args:
youtube_url (str): URL of the YouTube video.
output_dir (str): Directory to save the downloaded audio file.
delete_existing (bool): If True, deletes any existing file with the same name.
simulate (bool): If True, simulates the download without actually downloading.
Returns:
str: Path to the downloaded audio file.
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
download_cookies()
title = get_video_title(youtube_url)
audio_file = os.path.join(output_dir, title)
# Remove existing file if requested
if delete_existing and os.path.exists(audio_file + '.mp3'):
os.remove(audio_file + '.mp3')
# Prepare yt-dlp options
ydl_opts = {
'logger': MyLogger(),
'progress_hooks': [my_hook],
'format': 'bestaudio',
'outtmpl': audio_file,
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
'extractor_retries': 10,
'force_overwrites': True,
'cookiefile': 'cookies.txt',
'verbose': True,
'ratelimit': 500000,
'retries': 3,
'sleep_interval': 10,
'max_sleep_interval': 30
}
if simulate:
ydl_opts['simulate'] = True
# Download the audio using yt-dlp
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
return audio_file + '.wav'
def handle_file_upload(file):
"""
Handle file upload, standardize the filename, change extension to .wav, and copy it to the input folder.
Args:
file: Uploaded file object or file path string
Returns:
tuple: (input_path, formatted_title) or (None, error_message)
"""
if file is None:
return None, "No file uploaded"
# Check if 'file' is an instance of a file object or a string
if isinstance(file, str):
filename = os.path.basename(file) # If it's a string, use it directly
file_path = file # The string itself is the file path
else:
filename = os.path.basename(file.name) # If it's a file object
file_path = file.name
formatted_title = standardize_title(os.path.splitext(filename)[0]) # Removing extension
formatted_title = sanitize_filename(formatted_title.strip())
# Change the extension to .wav
input_path = os.path.join(INPUT_FOLDER, "wav", f"{formatted_title}.wav")
os.makedirs(os.path.dirname(input_path), exist_ok=True)
# Convert the input file to .wav if it's not already
audio = AudioSegment.from_file(file_path)
audio.export(input_path, format="wav")
return input_path, formatted_title
def run_inference(model_type, config_path, start_check_point, input_dir, output_dir, device_ids="0"):
"""
Run inference using the specified model and parameters.
Args:
model_type (str): Type of the model
config_path (str): Path to the model configuration
start_check_point (str): Path to the model checkpoint
input_dir (str): Input directory
output_dir (str): Output directory
device_ids (str): GPU device IDs to use
Returns:
subprocess.CompletedProcess: Result of the subprocess run
"""
command = [
"python", "inference.py",
"--model_type", model_type,
"--config_path", config_path,
"--start_check_point", start_check_point,
"--INPUT_FOLDER", input_dir,
"--store_dir", output_dir,
"--device_ids", device_ids
]
return subprocess.run(command, check=True, capture_output=True, text=True)
def move_stems_to_parent(input_dir):
"""
Move generated stem files to their parent directories.
Args:
input_dir (str): Input directory containing stem folders
"""
for subdir, dirs, files in os.walk(input_dir):
if subdir == input_dir:
continue
parent_dir = os.path.dirname(subdir)
song_name = os.path.basename(parent_dir)
# Move bass stem
if 'htdemucs' in subdir:
bass_path = os.path.join(subdir, f"{song_name}_bass.wav")
if os.path.exists(bass_path):
new_bass_path = os.path.join(parent_dir, "bass.wav")
shutil.move(bass_path, new_bass_path)
else:
print(f"Bass file not found: {bass_path}")
# Move vocals stem
elif 'mel_band_roformer' in subdir:
vocals_path = os.path.join(subdir, f"{song_name}_vocals.wav")
if os.path.exists(vocals_path):
new_vocals_path = os.path.join(parent_dir, "vocals.wav")
shutil.move(vocals_path, new_vocals_path)
else:
print(f"Vocals file not found: {vocals_path}")
# Move other stem
elif 'scnet' in subdir:
other_path = os.path.join(subdir, f"{song_name}_other.wav")
if os.path.exists(other_path):
new_other_path = os.path.join(parent_dir, "other.wav")
shutil.move(other_path, new_other_path)
else:
print(f"Other file not found: {other_path}")
# Move instrumental stem
elif 'bs_roformer' in subdir:
instrumental_path = os.path.join(subdir, f"{song_name}_other.wav")
if os.path.exists(instrumental_path):
new_instrumental_path = os.path.join(parent_dir, "instrumental.wav")
shutil.move(instrumental_path, new_instrumental_path)
def combine_stems_for_all(input_dir, output_format="mp3"):
"""
Combine all stems for each song in the input directory and export as MP3.
Args:
input_dir (str): Input directory containing song folders
output_format (str): Output audio format (default is 'mp3')
Returns:
str: Path to the combined audio file
"""
for subdir, _, _ in os.walk(input_dir):
if subdir == input_dir:
continue
song_name = os.path.basename(subdir).strip() # Remove any trailing spaces
print(f"Processing {subdir}")
stem_paths = {
"vocals": os.path.join(subdir, "vocals.wav"),
"bass": os.path.join(subdir, "bass.wav"),
"others": os.path.join(subdir, "other.wav"),
"instrumental": os.path.join(subdir, "instrumental.wav")
}
# Skip if not all stems are present
if not all(os.path.exists(path) for path in stem_paths.values()):
print(f"Skipping {subdir}, not all stems are present.")
continue
# Load and combine stems
stems = {name: AudioSegment.from_file(path) for name, path in stem_paths.items()}
combined = stems["vocals"].overlay(stems["bass"]).overlay(stems["others"]).overlay(stems["instrumental"])
# Trim silence at the end
trimmed_combined = trim_silence_at_end(combined)
# Format the output file name correctly
output_file = os.path.join(subdir, f"{song_name}.{output_format.lower()}")
# Export combined audio
try:
trimmed_combined.export(output_file, format=output_format.lower(), codec="libmp3lame", bitrate="320k")
print(f"Exported combined stems to {output_format.upper()} format: {output_file}")
except CouldntEncodeError as e:
print(f"{output_format.upper()} Encoding failed: {e}")
return None
return output_file
def trim_silence_at_end(audio_segment, silence_thresh=-50, chunk_size=10):
"""
Trim silence at the end of an audio segment.
Args:
audio_segment (AudioSegment): Input audio segment
silence_thresh (int): Silence threshold in dB
chunk_size (int): Size of chunks to analyze in ms
Returns:
AudioSegment: Trimmed audio segment
"""
silence_end = silence.detect_silence(audio_segment, min_silence_len=chunk_size, silence_thresh=silence_thresh)
if silence_end:
last_silence_start = silence_end[-1][0]
return audio_segment[:last_silence_start]
else:
return audio_segment
def delete_folders_and_files(input_dir):
"""
Delete temporary folders and files after processing.
Args:
input_dir (str): Input directory to clean up
"""
folders_to_delete = ['htdemucs', 'mel_band_roformer', 'scnet', 'bs_roformer']
files_to_delete = ['bass.wav', 'vocals.wav', 'other.wav', 'instrumental.wav']
for root, dirs, files in os.walk(input_dir, topdown=False):
if root == input_dir:
continue
# Delete specified folders
for folder in folders_to_delete:
folder_path = os.path.join(root, folder)
if os.path.isdir(folder_path):
print(f"Deleting folder: {folder_path}")
shutil.rmtree(folder_path)
# Delete specified files
for file in files_to_delete:
file_path = os.path.join(root, file)
if os.path.isfile(file_path):
print(f"Deleting file: {file_path}")
os.remove(file_path)
# Delete vocals folders
for root, dirs, files in os.walk(OUTPUT_FOLDER):
for dir_name in dirs:
if dir_name.endswith('_vocals'):
dir_path = os.path.join(root, dir_name)
print(f"Deleting folder: {dir_path}")
shutil.rmtree(dir_path)
print("Cleanup completed.")
@spaces.GPU(duration=160)
def process_audio(uploaded_file, link):
"""
Main function to process the uploaded audio file.
Args:
uploaded_file: Uploaded file object
Yields:
tuple: (status_message, output_file_path)
"""
try:
yield "Processing audio...", None
if uploaded_file:
input_path, formatted_title = handle_file_upload(uploaded_file)
if input_path is None:
raise ValueError("File upload failed.")
elif link:
new_file = download_youtube_audio(link)
input_path, formatted_title = handle_file_upload(new_file)
else:
raise ValueError("Please upload a WAV file.")
# Run inference for different models
yield "Starting SCNet inference...", None
proc_folder_direct("scnet", "configs/config_scnet_other.yaml", "results/model_scnet_other.ckpt", f"{INPUT_FOLDER}/wav", OUTPUT_FOLDER)
yield "Starting Mel Band Roformer inference...", None
proc_folder_direct("mel_band_roformer", "configs/config_mel_band_roformer_vocals.yaml", "results/model_mel_band_roformer_vocals.ckpt", f"{INPUT_FOLDER}/wav", OUTPUT_FOLDER, extract_instrumental=True)
yield "Starting HTDemucs inference...", None
proc_folder_direct("htdemucs", "configs/config_htdemucs_bass.yaml", "results/model_htdemucs_bass.th", f"{INPUT_FOLDER}/wav", OUTPUT_FOLDER)
# Rename instrumental file
source_path = f'{OUTPUT_FOLDER}{formatted_title}/mel_band_roformer/{formatted_title}_instrumental.wav'
destination_path = f'{OUTPUT_FOLDER}{formatted_title}/mel_band_roformer/{formatted_title}.wav'
os.rename(source_path, destination_path)
yield "Starting BS Roformer inference...", None
proc_folder_direct("bs_roformer", "configs/config_bs_roformer_instrumental.yaml", "results/model_bs_roformer_instrumental.ckpt", f'{OUTPUT_FOLDER}{formatted_title}/mel_band_roformer', OUTPUT_FOLDER)
# Clean up and organize files
yield "Moving input files...", None
delete_input_files(INPUT_FOLDER)
yield "Moving stems to parent...", None
move_stems_to_parent(OUTPUT_FOLDER)
yield "Combining stems...", None
output_file = combine_stems_for_all(OUTPUT_FOLDER, "mp3")
yield "Cleaning up...", None
delete_folders_and_files(OUTPUT_FOLDER)
yield f"Audio processing completed successfully.", output_file
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n{traceback.format_exc()}"
logging.error(error_msg)
yield error_msg, None
# Set up Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Music Player and Processor")
youtube_url = gr.Textbox(
label="YouTube Song URL",
placeholder="This feature is currently disabled. You cannot input a URL.",
interactive=False
)
file_upload = gr.File(label="Upload MP3 file", file_types=[".mp3"])
process_button = gr.Button("Process Audio")
log_output = gr.Textbox(label="Processing Log", interactive=False)
processed_audio_output = gr.File(label="Processed Audio")
process_button.click(
fn=process_audio,
inputs=[file_upload, youtube_url],
outputs=[log_output, processed_audio_output],
show_progress=True
)
# Launch the Gradio app
demo.launch() |