Spaces:
Running
on
Zero
Running
on
Zero
feat: add inline comments throughout app.py
Browse files
app.py
CHANGED
@@ -13,29 +13,59 @@ import spaces
|
|
13 |
from pydub.exceptions import CouldntEncodeError
|
14 |
from transformers import pipeline
|
15 |
|
|
|
16 |
model = pipeline('text-generation', model='EleutherAI/gpt-neo-125M')
|
17 |
|
|
|
18 |
OUTPUT_FOLDER = "separation_results/"
|
19 |
INPUT_FOLDER = "input"
|
20 |
download_path = ""
|
21 |
|
22 |
def sanitize_filename(filename):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
return re.sub(r'[\\/*?:"<>|]', '_', filename)
|
24 |
|
25 |
def delete_input_files(input_dir):
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
wav_dir = Path(input_dir) / "wav"
|
27 |
for wav_file in wav_dir.glob("*.wav"):
|
28 |
wav_file.unlink()
|
29 |
print(f"Deleted {wav_file}")
|
30 |
|
31 |
def standardize_title(input_title):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
title_cleaned = re.sub(r"[\(\[].*?[\)\]]", "", input_title)
|
33 |
|
|
|
34 |
unnecessary_words = ["official", "video", "hd", "4k", "lyrics", "music", "audio", "visualizer", "remix"]
|
35 |
title_cleaned = re.sub(r"\b(?:{})\b".format("|".join(unnecessary_words)), "", title_cleaned, flags=re.IGNORECASE)
|
36 |
|
|
|
37 |
parts = re.split(r"\s*-\s*|\s*,\s*", title_cleaned)
|
38 |
|
|
|
39 |
if len(parts) >= 2:
|
40 |
title_part = parts[-1].strip()
|
41 |
artist_part = ', '.join(parts[:-1]).strip()
|
@@ -43,27 +73,38 @@ def standardize_title(input_title):
|
|
43 |
artist_part = "Unknown Artist"
|
44 |
title_part = title_cleaned.strip()
|
45 |
|
|
|
46 |
if "with" in input_title.lower() or "feat" in input_title.lower():
|
47 |
match = re.search(r"\((with|feat\.?) (.*?)\)", input_title, re.IGNORECASE)
|
48 |
if match:
|
49 |
additional_artist = match.group(2).strip()
|
50 |
artist_part = f"{artist_part}, {additional_artist}" if artist_part != "Unknown Artist" else additional_artist
|
51 |
|
|
|
52 |
artist_part = re.sub(r'\s+', ' ', artist_part).title()
|
53 |
title_part = re.sub(r'\s+', ' ', title_part).title()
|
54 |
|
|
|
55 |
standardized_output = f"{artist_part} - {title_part}"
|
56 |
|
57 |
return standardized_output.strip()
|
58 |
|
59 |
def handle_file_upload(file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
if file is None:
|
61 |
return None, "No file uploaded"
|
62 |
|
63 |
filename = os.path.basename(file.name)
|
64 |
|
65 |
formatted_title = standardize_title(filename)
|
66 |
-
|
67 |
formatted_title = sanitize_filename(formatted_title.strip())
|
68 |
|
69 |
input_path = os.path.join(INPUT_FOLDER, "wav", f"{formatted_title}.wav")
|
@@ -73,8 +114,21 @@ def handle_file_upload(file):
|
|
73 |
|
74 |
return input_path, formatted_title
|
75 |
|
76 |
-
|
77 |
def run_inference(model_type, config_path, start_check_point, input_dir, output_dir, device_ids="0"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
command = [
|
79 |
"python", "inference.py",
|
80 |
"--model_type", model_type,
|
@@ -87,6 +141,12 @@ def run_inference(model_type, config_path, start_check_point, input_dir, output_
|
|
87 |
return subprocess.run(command, check=True, capture_output=True, text=True)
|
88 |
|
89 |
def move_stems_to_parent(input_dir):
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
for subdir, dirs, files in os.walk(input_dir):
|
91 |
if subdir == input_dir:
|
92 |
continue
|
@@ -94,42 +154,51 @@ def move_stems_to_parent(input_dir):
|
|
94 |
parent_dir = os.path.dirname(subdir)
|
95 |
song_name = os.path.basename(parent_dir)
|
96 |
|
|
|
97 |
if 'htdemucs' in subdir:
|
98 |
-
print(f"Processing htdemucs in {subdir}")
|
99 |
bass_path = os.path.join(subdir, f"{song_name}_bass.wav")
|
100 |
if os.path.exists(bass_path):
|
101 |
new_bass_path = os.path.join(parent_dir, "bass.wav")
|
102 |
-
print(f"Moving {bass_path} to {new_bass_path}")
|
103 |
shutil.move(bass_path, new_bass_path)
|
104 |
else:
|
105 |
print(f"Bass file not found: {bass_path}")
|
|
|
|
|
106 |
elif 'mel_band_roformer' in subdir:
|
107 |
-
print(f"Processing mel_band_roformer in {subdir}")
|
108 |
vocals_path = os.path.join(subdir, f"{song_name}_vocals.wav")
|
109 |
if os.path.exists(vocals_path):
|
110 |
new_vocals_path = os.path.join(parent_dir, "vocals.wav")
|
111 |
-
print(f"Moving {vocals_path} to {new_vocals_path}")
|
112 |
shutil.move(vocals_path, new_vocals_path)
|
113 |
else:
|
114 |
print(f"Vocals file not found: {vocals_path}")
|
|
|
|
|
115 |
elif 'scnet' in subdir:
|
116 |
-
print(f"Processing scnet in {subdir}")
|
117 |
other_path = os.path.join(subdir, f"{song_name}_other.wav")
|
118 |
if os.path.exists(other_path):
|
119 |
new_other_path = os.path.join(parent_dir, "other.wav")
|
120 |
-
print(f"Moving {other_path} to {new_other_path}")
|
121 |
shutil.move(other_path, new_other_path)
|
122 |
else:
|
123 |
print(f"Other file not found: {other_path}")
|
|
|
|
|
124 |
elif 'bs_roformer' in subdir:
|
125 |
-
print(f"Processing bs_roformer in {subdir}")
|
126 |
instrumental_path = os.path.join(subdir, f"{song_name}_other.wav")
|
127 |
if os.path.exists(instrumental_path):
|
128 |
new_instrumental_path = os.path.join(parent_dir, "instrumental.wav")
|
129 |
-
print(f"Moving {instrumental_path} to {new_instrumental_path}")
|
130 |
shutil.move(instrumental_path, new_instrumental_path)
|
131 |
|
132 |
def combine_stems_for_all(input_dir, output_format):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
for subdir, _, _ in os.walk(input_dir):
|
134 |
if subdir == input_dir:
|
135 |
continue
|
@@ -144,20 +213,22 @@ def combine_stems_for_all(input_dir, output_format):
|
|
144 |
"instrumental": os.path.join(subdir, "instrumental.wav")
|
145 |
}
|
146 |
|
|
|
147 |
if not all(os.path.exists(path) for path in stem_paths.values()):
|
148 |
print(f"Skipping {subdir}, not all stems are present.")
|
149 |
continue
|
150 |
|
|
|
151 |
stems = {name: AudioSegment.from_file(path) for name, path in stem_paths.items()}
|
152 |
combined = stems["vocals"].overlay(stems["bass"]).overlay(stems["others"]).overlay(stems["instrumental"])
|
153 |
|
154 |
-
# Trim silence
|
155 |
trimmed_combined = trim_silence_at_end(combined)
|
156 |
|
157 |
-
# Determine the output file format and codec
|
158 |
output_file = os.path.join(subdir, f"{song_name}")
|
159 |
|
160 |
try:
|
|
|
161 |
if output_format == "m4a":
|
162 |
trimmed_combined.export(output_file, format="ipod", codec="aac")
|
163 |
else:
|
@@ -171,11 +242,15 @@ def combine_stems_for_all(input_dir, output_format):
|
|
171 |
|
172 |
def trim_silence_at_end(audio_segment, silence_thresh=-50, chunk_size=10):
|
173 |
"""
|
174 |
-
|
175 |
-
|
176 |
-
:
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
179 |
"""
|
180 |
silence_end = silence.detect_silence(audio_segment, min_silence_len=chunk_size, silence_thresh=silence_thresh)
|
181 |
|
@@ -186,6 +261,12 @@ def trim_silence_at_end(audio_segment, silence_thresh=-50, chunk_size=10):
|
|
186 |
return audio_segment
|
187 |
|
188 |
def delete_folders_and_files(input_dir):
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
folders_to_delete = ['htdemucs', 'mel_band_roformer', 'scnet', 'bs_roformer']
|
190 |
files_to_delete = ['bass.wav', 'vocals.wav', 'other.wav', 'instrumental.wav']
|
191 |
|
@@ -193,18 +274,21 @@ def delete_folders_and_files(input_dir):
|
|
193 |
if root == input_dir:
|
194 |
continue
|
195 |
|
|
|
196 |
for folder in folders_to_delete:
|
197 |
folder_path = os.path.join(root, folder)
|
198 |
if os.path.isdir(folder_path):
|
199 |
print(f"Deleting folder: {folder_path}")
|
200 |
shutil.rmtree(folder_path)
|
201 |
|
|
|
202 |
for file in files_to_delete:
|
203 |
file_path = os.path.join(root, file)
|
204 |
if os.path.isfile(file_path):
|
205 |
print(f"Deleting file: {file_path}")
|
206 |
os.remove(file_path)
|
207 |
|
|
|
208 |
for root, dirs, files in os.walk(OUTPUT_FOLDER):
|
209 |
for dir_name in dirs:
|
210 |
if dir_name.endswith('_vocals'):
|
@@ -214,8 +298,17 @@ def delete_folders_and_files(input_dir):
|
|
214 |
|
215 |
print("Cleanup completed.")
|
216 |
|
217 |
-
@spaces.GPU(duration=120)
|
218 |
def process_audio(uploaded_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
try:
|
220 |
yield "Processing audio...", None
|
221 |
|
@@ -226,6 +319,7 @@ def process_audio(uploaded_file):
|
|
226 |
else:
|
227 |
raise ValueError("Please upload a WAV file.")
|
228 |
|
|
|
229 |
yield "Starting SCNet inference...", None
|
230 |
proc_folder_direct("scnet", "configs/config_scnet_other.yaml", "results/model_scnet_other.ckpt", f"{INPUT_FOLDER}/wav", OUTPUT_FOLDER)
|
231 |
|
@@ -235,14 +329,15 @@ def process_audio(uploaded_file):
|
|
235 |
yield "Starting HTDemucs inference...", None
|
236 |
proc_folder_direct("htdemucs", "configs/config_htdemucs_bass.yaml", "results/model_htdemucs_bass.th", f"{INPUT_FOLDER}/wav", OUTPUT_FOLDER)
|
237 |
|
|
|
238 |
source_path = f'{OUTPUT_FOLDER}{formatted_title}/mel_band_roformer/{formatted_title}_instrumental.wav'
|
239 |
destination_path = f'{OUTPUT_FOLDER}{formatted_title}/mel_band_roformer/{formatted_title}.wav'
|
240 |
-
|
241 |
os.rename(source_path, destination_path)
|
242 |
|
243 |
yield "Starting BS Roformer inference...", None
|
244 |
proc_folder_direct("bs_roformer", "configs/config_bs_roformer_instrumental.yaml", "results/model_bs_roformer_instrumental.ckpt", f'{OUTPUT_FOLDER}{formatted_title}/mel_band_roformer', OUTPUT_FOLDER)
|
245 |
|
|
|
246 |
yield "Moving input files...", None
|
247 |
delete_input_files(INPUT_FOLDER)
|
248 |
|
@@ -261,13 +356,12 @@ def process_audio(uploaded_file):
|
|
261 |
logging.error(error_msg)
|
262 |
yield error_msg, None
|
263 |
|
|
|
264 |
with gr.Blocks() as demo:
|
265 |
gr.Markdown("# Music Player and Processor")
|
266 |
|
267 |
file_upload = gr.File(label="Upload WAV file", file_types=[".m4a"])
|
268 |
-
|
269 |
process_button = gr.Button("Process Audio")
|
270 |
-
|
271 |
log_output = gr.Textbox(label="Processing Log", interactive=False)
|
272 |
processed_audio_output = gr.File(label="Processed Audio")
|
273 |
|
@@ -278,4 +372,5 @@ with gr.Blocks() as demo:
|
|
278 |
show_progress=True
|
279 |
)
|
280 |
|
|
|
281 |
demo.launch()
|
|
|
13 |
from pydub.exceptions import CouldntEncodeError
|
14 |
from transformers import pipeline
|
15 |
|
16 |
+
# Initialize text generation model
|
17 |
model = pipeline('text-generation', model='EleutherAI/gpt-neo-125M')
|
18 |
|
19 |
+
# Define constants
|
20 |
OUTPUT_FOLDER = "separation_results/"
|
21 |
INPUT_FOLDER = "input"
|
22 |
download_path = ""
|
23 |
|
24 |
def sanitize_filename(filename):
|
25 |
+
"""
|
26 |
+
Remove special characters from filename to ensure it's valid across different file systems.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
filename (str): The original filename
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
str: Sanitized filename
|
33 |
+
"""
|
34 |
return re.sub(r'[\\/*?:"<>|]', '_', filename)
|
35 |
|
36 |
def delete_input_files(input_dir):
|
37 |
+
"""
|
38 |
+
Delete all WAV files in the input directory.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
input_dir (str): Path to the input directory
|
42 |
+
"""
|
43 |
wav_dir = Path(input_dir) / "wav"
|
44 |
for wav_file in wav_dir.glob("*.wav"):
|
45 |
wav_file.unlink()
|
46 |
print(f"Deleted {wav_file}")
|
47 |
|
48 |
def standardize_title(input_title):
|
49 |
+
"""
|
50 |
+
Standardize the title format by removing unnecessary words and rearranging artist and title.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
input_title (str): The original title
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
str: Standardized title in "Artist - Title" format
|
57 |
+
"""
|
58 |
+
# Remove content within parentheses or brackets
|
59 |
title_cleaned = re.sub(r"[\(\[].*?[\)\]]", "", input_title)
|
60 |
|
61 |
+
# Remove unnecessary words
|
62 |
unnecessary_words = ["official", "video", "hd", "4k", "lyrics", "music", "audio", "visualizer", "remix"]
|
63 |
title_cleaned = re.sub(r"\b(?:{})\b".format("|".join(unnecessary_words)), "", title_cleaned, flags=re.IGNORECASE)
|
64 |
|
65 |
+
# Split title into parts
|
66 |
parts = re.split(r"\s*-\s*|\s*,\s*", title_cleaned)
|
67 |
|
68 |
+
# Determine artist and title parts
|
69 |
if len(parts) >= 2:
|
70 |
title_part = parts[-1].strip()
|
71 |
artist_part = ', '.join(parts[:-1]).strip()
|
|
|
73 |
artist_part = "Unknown Artist"
|
74 |
title_part = title_cleaned.strip()
|
75 |
|
76 |
+
# Handle "with" or "feat" in the title
|
77 |
if "with" in input_title.lower() or "feat" in input_title.lower():
|
78 |
match = re.search(r"\((with|feat\.?) (.*?)\)", input_title, re.IGNORECASE)
|
79 |
if match:
|
80 |
additional_artist = match.group(2).strip()
|
81 |
artist_part = f"{artist_part}, {additional_artist}" if artist_part != "Unknown Artist" else additional_artist
|
82 |
|
83 |
+
# Clean up and capitalize
|
84 |
artist_part = re.sub(r'\s+', ' ', artist_part).title()
|
85 |
title_part = re.sub(r'\s+', ' ', title_part).title()
|
86 |
|
87 |
+
# Combine artist and title
|
88 |
standardized_output = f"{artist_part} - {title_part}"
|
89 |
|
90 |
return standardized_output.strip()
|
91 |
|
92 |
def handle_file_upload(file):
|
93 |
+
"""
|
94 |
+
Handle file upload, standardize the filename, and copy it to the input folder.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
file: Uploaded file object
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
tuple: (input_path, formatted_title) or (None, error_message)
|
101 |
+
"""
|
102 |
if file is None:
|
103 |
return None, "No file uploaded"
|
104 |
|
105 |
filename = os.path.basename(file.name)
|
106 |
|
107 |
formatted_title = standardize_title(filename)
|
|
|
108 |
formatted_title = sanitize_filename(formatted_title.strip())
|
109 |
|
110 |
input_path = os.path.join(INPUT_FOLDER, "wav", f"{formatted_title}.wav")
|
|
|
114 |
|
115 |
return input_path, formatted_title
|
116 |
|
|
|
117 |
def run_inference(model_type, config_path, start_check_point, input_dir, output_dir, device_ids="0"):
|
118 |
+
"""
|
119 |
+
Run inference using the specified model and parameters.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
model_type (str): Type of the model
|
123 |
+
config_path (str): Path to the model configuration
|
124 |
+
start_check_point (str): Path to the model checkpoint
|
125 |
+
input_dir (str): Input directory
|
126 |
+
output_dir (str): Output directory
|
127 |
+
device_ids (str): GPU device IDs to use
|
128 |
+
|
129 |
+
Returns:
|
130 |
+
subprocess.CompletedProcess: Result of the subprocess run
|
131 |
+
"""
|
132 |
command = [
|
133 |
"python", "inference.py",
|
134 |
"--model_type", model_type,
|
|
|
141 |
return subprocess.run(command, check=True, capture_output=True, text=True)
|
142 |
|
143 |
def move_stems_to_parent(input_dir):
|
144 |
+
"""
|
145 |
+
Move generated stem files to their parent directories.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
input_dir (str): Input directory containing stem folders
|
149 |
+
"""
|
150 |
for subdir, dirs, files in os.walk(input_dir):
|
151 |
if subdir == input_dir:
|
152 |
continue
|
|
|
154 |
parent_dir = os.path.dirname(subdir)
|
155 |
song_name = os.path.basename(parent_dir)
|
156 |
|
157 |
+
# Move bass stem
|
158 |
if 'htdemucs' in subdir:
|
|
|
159 |
bass_path = os.path.join(subdir, f"{song_name}_bass.wav")
|
160 |
if os.path.exists(bass_path):
|
161 |
new_bass_path = os.path.join(parent_dir, "bass.wav")
|
|
|
162 |
shutil.move(bass_path, new_bass_path)
|
163 |
else:
|
164 |
print(f"Bass file not found: {bass_path}")
|
165 |
+
|
166 |
+
# Move vocals stem
|
167 |
elif 'mel_band_roformer' in subdir:
|
|
|
168 |
vocals_path = os.path.join(subdir, f"{song_name}_vocals.wav")
|
169 |
if os.path.exists(vocals_path):
|
170 |
new_vocals_path = os.path.join(parent_dir, "vocals.wav")
|
|
|
171 |
shutil.move(vocals_path, new_vocals_path)
|
172 |
else:
|
173 |
print(f"Vocals file not found: {vocals_path}")
|
174 |
+
|
175 |
+
# Move other stem
|
176 |
elif 'scnet' in subdir:
|
|
|
177 |
other_path = os.path.join(subdir, f"{song_name}_other.wav")
|
178 |
if os.path.exists(other_path):
|
179 |
new_other_path = os.path.join(parent_dir, "other.wav")
|
|
|
180 |
shutil.move(other_path, new_other_path)
|
181 |
else:
|
182 |
print(f"Other file not found: {other_path}")
|
183 |
+
|
184 |
+
# Move instrumental stem
|
185 |
elif 'bs_roformer' in subdir:
|
|
|
186 |
instrumental_path = os.path.join(subdir, f"{song_name}_other.wav")
|
187 |
if os.path.exists(instrumental_path):
|
188 |
new_instrumental_path = os.path.join(parent_dir, "instrumental.wav")
|
|
|
189 |
shutil.move(instrumental_path, new_instrumental_path)
|
190 |
|
191 |
def combine_stems_for_all(input_dir, output_format):
|
192 |
+
"""
|
193 |
+
Combine all stems for each song in the input directory.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
input_dir (str): Input directory containing song folders
|
197 |
+
output_format (str): Output audio format (e.g., 'm4a')
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
str: Path to the combined audio file
|
201 |
+
"""
|
202 |
for subdir, _, _ in os.walk(input_dir):
|
203 |
if subdir == input_dir:
|
204 |
continue
|
|
|
213 |
"instrumental": os.path.join(subdir, "instrumental.wav")
|
214 |
}
|
215 |
|
216 |
+
# Skip if not all stems are present
|
217 |
if not all(os.path.exists(path) for path in stem_paths.values()):
|
218 |
print(f"Skipping {subdir}, not all stems are present.")
|
219 |
continue
|
220 |
|
221 |
+
# Load and combine stems
|
222 |
stems = {name: AudioSegment.from_file(path) for name, path in stem_paths.items()}
|
223 |
combined = stems["vocals"].overlay(stems["bass"]).overlay(stems["others"]).overlay(stems["instrumental"])
|
224 |
|
225 |
+
# Trim silence at the end
|
226 |
trimmed_combined = trim_silence_at_end(combined)
|
227 |
|
|
|
228 |
output_file = os.path.join(subdir, f"{song_name}")
|
229 |
|
230 |
try:
|
231 |
+
# Export combined audio
|
232 |
if output_format == "m4a":
|
233 |
trimmed_combined.export(output_file, format="ipod", codec="aac")
|
234 |
else:
|
|
|
242 |
|
243 |
def trim_silence_at_end(audio_segment, silence_thresh=-50, chunk_size=10):
|
244 |
"""
|
245 |
+
Trim silence at the end of an audio segment.
|
246 |
+
|
247 |
+
Args:
|
248 |
+
audio_segment (AudioSegment): Input audio segment
|
249 |
+
silence_thresh (int): Silence threshold in dB
|
250 |
+
chunk_size (int): Size of chunks to analyze in ms
|
251 |
+
|
252 |
+
Returns:
|
253 |
+
AudioSegment: Trimmed audio segment
|
254 |
"""
|
255 |
silence_end = silence.detect_silence(audio_segment, min_silence_len=chunk_size, silence_thresh=silence_thresh)
|
256 |
|
|
|
261 |
return audio_segment
|
262 |
|
263 |
def delete_folders_and_files(input_dir):
|
264 |
+
"""
|
265 |
+
Delete temporary folders and files after processing.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
input_dir (str): Input directory to clean up
|
269 |
+
"""
|
270 |
folders_to_delete = ['htdemucs', 'mel_band_roformer', 'scnet', 'bs_roformer']
|
271 |
files_to_delete = ['bass.wav', 'vocals.wav', 'other.wav', 'instrumental.wav']
|
272 |
|
|
|
274 |
if root == input_dir:
|
275 |
continue
|
276 |
|
277 |
+
# Delete specified folders
|
278 |
for folder in folders_to_delete:
|
279 |
folder_path = os.path.join(root, folder)
|
280 |
if os.path.isdir(folder_path):
|
281 |
print(f"Deleting folder: {folder_path}")
|
282 |
shutil.rmtree(folder_path)
|
283 |
|
284 |
+
# Delete specified files
|
285 |
for file in files_to_delete:
|
286 |
file_path = os.path.join(root, file)
|
287 |
if os.path.isfile(file_path):
|
288 |
print(f"Deleting file: {file_path}")
|
289 |
os.remove(file_path)
|
290 |
|
291 |
+
# Delete vocals folders
|
292 |
for root, dirs, files in os.walk(OUTPUT_FOLDER):
|
293 |
for dir_name in dirs:
|
294 |
if dir_name.endswith('_vocals'):
|
|
|
298 |
|
299 |
print("Cleanup completed.")
|
300 |
|
301 |
+
@spaces.GPU(duration=120)
|
302 |
def process_audio(uploaded_file):
|
303 |
+
"""
|
304 |
+
Main function to process the uploaded audio file.
|
305 |
+
|
306 |
+
Args:
|
307 |
+
uploaded_file: Uploaded file object
|
308 |
+
|
309 |
+
Yields:
|
310 |
+
tuple: (status_message, output_file_path)
|
311 |
+
"""
|
312 |
try:
|
313 |
yield "Processing audio...", None
|
314 |
|
|
|
319 |
else:
|
320 |
raise ValueError("Please upload a WAV file.")
|
321 |
|
322 |
+
# Run inference for different models
|
323 |
yield "Starting SCNet inference...", None
|
324 |
proc_folder_direct("scnet", "configs/config_scnet_other.yaml", "results/model_scnet_other.ckpt", f"{INPUT_FOLDER}/wav", OUTPUT_FOLDER)
|
325 |
|
|
|
329 |
yield "Starting HTDemucs inference...", None
|
330 |
proc_folder_direct("htdemucs", "configs/config_htdemucs_bass.yaml", "results/model_htdemucs_bass.th", f"{INPUT_FOLDER}/wav", OUTPUT_FOLDER)
|
331 |
|
332 |
+
# Rename instrumental file
|
333 |
source_path = f'{OUTPUT_FOLDER}{formatted_title}/mel_band_roformer/{formatted_title}_instrumental.wav'
|
334 |
destination_path = f'{OUTPUT_FOLDER}{formatted_title}/mel_band_roformer/{formatted_title}.wav'
|
|
|
335 |
os.rename(source_path, destination_path)
|
336 |
|
337 |
yield "Starting BS Roformer inference...", None
|
338 |
proc_folder_direct("bs_roformer", "configs/config_bs_roformer_instrumental.yaml", "results/model_bs_roformer_instrumental.ckpt", f'{OUTPUT_FOLDER}{formatted_title}/mel_band_roformer', OUTPUT_FOLDER)
|
339 |
|
340 |
+
# Clean up and organize files
|
341 |
yield "Moving input files...", None
|
342 |
delete_input_files(INPUT_FOLDER)
|
343 |
|
|
|
356 |
logging.error(error_msg)
|
357 |
yield error_msg, None
|
358 |
|
359 |
+
# Set up Gradio interface
|
360 |
with gr.Blocks() as demo:
|
361 |
gr.Markdown("# Music Player and Processor")
|
362 |
|
363 |
file_upload = gr.File(label="Upload WAV file", file_types=[".m4a"])
|
|
|
364 |
process_button = gr.Button("Process Audio")
|
|
|
365 |
log_output = gr.Textbox(label="Processing Log", interactive=False)
|
366 |
processed_audio_output = gr.File(label="Processed Audio")
|
367 |
|
|
|
372 |
show_progress=True
|
373 |
)
|
374 |
|
375 |
+
# Launch the Gradio app
|
376 |
demo.launch()
|