Aumkeshchy2003's picture
Update app.py
36e1064 verified
raw
history blame
1.36 kB
from ultralytics import YOLO
import torch
import cv2
import numpy as np
import gradio as gr
from PIL import Image
# Load YOLOv5 model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = YOLO("yolov5s.pt") # Load pre-trained YOLOv5s model
model.to(device)
model.eval()
# Load COCO class labels
CLASS_NAMES = model.names # YOLOv5's built-in class names
def preprocess_image(image):
image = Image.fromarray(image)
image = image.convert("RGB")
return image
def detect_objects(image):
image = preprocess_image(image)
results = model.predict(image) # Run YOLOv5 inference
# Convert results to bounding box format
image = np.array(image)
for result in results:
for box, cls in zip(result.boxes.xyxy, result.boxes.cls):
x1, y1, x2, y2 = map(int, box[:4])
class_name = CLASS_NAMES[int(cls)] # Get class name
# Draw bounding box
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
# Put class label
cv2.putText(image, class_name, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (255, 0, 0), 2, cv2.LINE_AA)
return image
# Gradio UI
iface = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="numpy"),
outputs=gr.Image(type="numpy"),
live=True,
)
iface.launch()