from ultralytics import YOLO import torch import cv2 import numpy as np import gradio as gr from PIL import Image # Load YOLOv5 model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = YOLO("yolov5s.pt") # Load pre-trained YOLOv5s model model.to(device) model.eval() # Load COCO class labels CLASS_NAMES = model.names # YOLOv5's built-in class names def preprocess_image(image): image = Image.fromarray(image) image = image.convert("RGB") return image def detect_objects(image): image = preprocess_image(image) results = model.predict(image) # Run YOLOv5 inference # Convert results to bounding box format image = np.array(image) for result in results: for box, cls in zip(result.boxes.xyxy, result.boxes.cls): x1, y1, x2, y2 = map(int, box[:4]) class_name = CLASS_NAMES[int(cls)] # Get class name # Draw bounding box cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2) # Put class label cv2.putText(image, class_name, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2, cv2.LINE_AA) return image # Gradio UI iface = gr.Interface( fn=detect_objects, inputs=gr.Image(type="numpy"), outputs=gr.Image(type="numpy"), live=True, ) iface.launch()