Spaces:
Running
on
Zero
Running
on
Zero
Update
Browse files
app.py
CHANGED
@@ -3,8 +3,10 @@
|
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import os
|
|
|
6 |
|
7 |
import gradio as gr
|
|
|
8 |
import PIL.Image
|
9 |
import torch
|
10 |
from diffusers import StableDiffusionAttendAndExcitePipeline, StableDiffusionPipeline
|
@@ -29,6 +31,16 @@ if torch.cuda.is_available():
|
|
29 |
sd_pipe.to(device)
|
30 |
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def get_token_table(prompt: str) -> list[tuple[int, str]]:
|
33 |
tokens = [ax_pipe.tokenizer.decode(t) for t in ax_pipe.tokenizer(prompt)["input_ids"]]
|
34 |
tokens = tokens[1:-1]
|
@@ -40,7 +52,7 @@ def run(
|
|
40 |
indices_to_alter_str: str,
|
41 |
seed: int = 0,
|
42 |
apply_attend_and_excite: bool = True,
|
43 |
-
|
44 |
guidance_scale: float = 7.5,
|
45 |
scale_factor: int = 20,
|
46 |
thresholds: dict[int, float] = {
|
@@ -48,9 +60,12 @@ def run(
|
|
48 |
20: 0.8,
|
49 |
},
|
50 |
max_iter_to_alter: int = 25,
|
|
|
51 |
) -> PIL.Image.Image:
|
52 |
-
|
|
|
53 |
|
|
|
54 |
if apply_attend_and_excite:
|
55 |
try:
|
56 |
token_indices = list(map(int, indices_to_alter_str.split(",")))
|
@@ -61,7 +76,7 @@ def run(
|
|
61 |
token_indices=token_indices,
|
62 |
guidance_scale=guidance_scale,
|
63 |
generator=generator,
|
64 |
-
num_inference_steps=
|
65 |
max_iter_to_alter=max_iter_to_alter,
|
66 |
thresholds=thresholds,
|
67 |
scale_factor=scale_factor,
|
@@ -71,7 +86,7 @@ def run(
|
|
71 |
prompt=prompt,
|
72 |
guidance_scale=guidance_scale,
|
73 |
generator=generator,
|
74 |
-
num_inference_steps=
|
75 |
)
|
76 |
return out.images[0]
|
77 |
|
@@ -115,23 +130,24 @@ with gr.Blocks(css="style.css") as demo:
|
|
115 |
max_lines=1,
|
116 |
placeholder="4,16",
|
117 |
)
|
|
|
118 |
seed = gr.Slider(
|
119 |
label="Seed",
|
120 |
minimum=0,
|
121 |
-
maximum=
|
122 |
step=1,
|
123 |
value=0,
|
124 |
)
|
125 |
-
|
126 |
-
|
127 |
-
label="Number of steps",
|
128 |
-
minimum=
|
129 |
-
maximum=
|
130 |
step=1,
|
131 |
value=50,
|
132 |
)
|
133 |
guidance_scale = gr.Slider(
|
134 |
-
label="
|
135 |
minimum=0,
|
136 |
maximum=50,
|
137 |
step=0.1,
|
@@ -246,10 +262,16 @@ with gr.Blocks(css="style.css") as demo:
|
|
246 |
token_indices_str,
|
247 |
seed,
|
248 |
apply_attend_and_excite,
|
249 |
-
|
250 |
guidance_scale,
|
251 |
]
|
252 |
prompt.submit(
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
fn=get_token_table,
|
254 |
inputs=prompt,
|
255 |
outputs=token_indices_table,
|
@@ -262,6 +284,12 @@ with gr.Blocks(css="style.css") as demo:
|
|
262 |
api_name=False,
|
263 |
)
|
264 |
token_indices_str.submit(
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
fn=get_token_table,
|
266 |
inputs=prompt,
|
267 |
outputs=token_indices_table,
|
@@ -274,6 +302,12 @@ with gr.Blocks(css="style.css") as demo:
|
|
274 |
api_name=False,
|
275 |
)
|
276 |
run_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
fn=get_token_table,
|
278 |
inputs=prompt,
|
279 |
outputs=token_indices_table,
|
|
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import os
|
6 |
+
import random
|
7 |
|
8 |
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
import PIL.Image
|
11 |
import torch
|
12 |
from diffusers import StableDiffusionAttendAndExcitePipeline, StableDiffusionPipeline
|
|
|
31 |
sd_pipe.to(device)
|
32 |
|
33 |
|
34 |
+
MAX_INFERENCE_STEPS = 100
|
35 |
+
MAX_SEED = np.iinfo(np.int32).max
|
36 |
+
|
37 |
+
|
38 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
39 |
+
if randomize_seed:
|
40 |
+
seed = random.randint(0, MAX_SEED)
|
41 |
+
return seed
|
42 |
+
|
43 |
+
|
44 |
def get_token_table(prompt: str) -> list[tuple[int, str]]:
|
45 |
tokens = [ax_pipe.tokenizer.decode(t) for t in ax_pipe.tokenizer(prompt)["input_ids"]]
|
46 |
tokens = tokens[1:-1]
|
|
|
52 |
indices_to_alter_str: str,
|
53 |
seed: int = 0,
|
54 |
apply_attend_and_excite: bool = True,
|
55 |
+
num_inference_steps: int = 50,
|
56 |
guidance_scale: float = 7.5,
|
57 |
scale_factor: int = 20,
|
58 |
thresholds: dict[int, float] = {
|
|
|
60 |
20: 0.8,
|
61 |
},
|
62 |
max_iter_to_alter: int = 25,
|
63 |
+
progress=gr.Progress(track_tqdm=True),
|
64 |
) -> PIL.Image.Image:
|
65 |
+
if num_inference_steps > MAX_INFERENCE_STEPS:
|
66 |
+
raise gr.Error(f"Number of steps cannot exceed {MAX_INFERENCE_STEPS}.")
|
67 |
|
68 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
69 |
if apply_attend_and_excite:
|
70 |
try:
|
71 |
token_indices = list(map(int, indices_to_alter_str.split(",")))
|
|
|
76 |
token_indices=token_indices,
|
77 |
guidance_scale=guidance_scale,
|
78 |
generator=generator,
|
79 |
+
num_inference_steps=num_inference_steps,
|
80 |
max_iter_to_alter=max_iter_to_alter,
|
81 |
thresholds=thresholds,
|
82 |
scale_factor=scale_factor,
|
|
|
86 |
prompt=prompt,
|
87 |
guidance_scale=guidance_scale,
|
88 |
generator=generator,
|
89 |
+
num_inference_steps=num_inference_steps,
|
90 |
)
|
91 |
return out.images[0]
|
92 |
|
|
|
130 |
max_lines=1,
|
131 |
placeholder="4,16",
|
132 |
)
|
133 |
+
apply_attend_and_excite = gr.Checkbox(label="Apply Attend-and-Excite", value=True)
|
134 |
seed = gr.Slider(
|
135 |
label="Seed",
|
136 |
minimum=0,
|
137 |
+
maximum=MAX_SEED,
|
138 |
step=1,
|
139 |
value=0,
|
140 |
)
|
141 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
142 |
+
num_inference_steps = gr.Slider(
|
143 |
+
label="Number of inference steps",
|
144 |
+
minimum=1,
|
145 |
+
maximum=MAX_INFERENCE_STEPS,
|
146 |
step=1,
|
147 |
value=50,
|
148 |
)
|
149 |
guidance_scale = gr.Slider(
|
150 |
+
label="Guidance scale",
|
151 |
minimum=0,
|
152 |
maximum=50,
|
153 |
step=0.1,
|
|
|
262 |
token_indices_str,
|
263 |
seed,
|
264 |
apply_attend_and_excite,
|
265 |
+
num_inference_steps,
|
266 |
guidance_scale,
|
267 |
]
|
268 |
prompt.submit(
|
269 |
+
fn=randomize_seed_fn,
|
270 |
+
inputs=[seed, randomize_seed],
|
271 |
+
outputs=seed,
|
272 |
+
queue=False,
|
273 |
+
api_name=False,
|
274 |
+
).then(
|
275 |
fn=get_token_table,
|
276 |
inputs=prompt,
|
277 |
outputs=token_indices_table,
|
|
|
284 |
api_name=False,
|
285 |
)
|
286 |
token_indices_str.submit(
|
287 |
+
fn=randomize_seed_fn,
|
288 |
+
inputs=[seed, randomize_seed],
|
289 |
+
outputs=seed,
|
290 |
+
queue=False,
|
291 |
+
api_name=False,
|
292 |
+
).then(
|
293 |
fn=get_token_table,
|
294 |
inputs=prompt,
|
295 |
outputs=token_indices_table,
|
|
|
302 |
api_name=False,
|
303 |
)
|
304 |
run_button.click(
|
305 |
+
fn=randomize_seed_fn,
|
306 |
+
inputs=[seed, randomize_seed],
|
307 |
+
outputs=seed,
|
308 |
+
queue=False,
|
309 |
+
api_name=False,
|
310 |
+
).then(
|
311 |
fn=get_token_table,
|
312 |
inputs=prompt,
|
313 |
outputs=token_indices_table,
|