Spaces:
Running
on
Zero
Running
on
Zero
Update
Browse files
app.py
CHANGED
@@ -6,8 +6,8 @@ import os
|
|
6 |
|
7 |
import gradio as gr
|
8 |
import PIL.Image
|
9 |
-
|
10 |
-
from
|
11 |
|
12 |
DESCRIPTION = """\
|
13 |
# Attend-and-Excite
|
@@ -17,7 +17,63 @@ Attend-and-Excite performs attention-based generative semantic guidance to mitig
|
|
17 |
Select a prompt and a set of indices matching the subjects you wish to strengthen (the `Check token indices` cell can help map between a word and its index).
|
18 |
"""
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
def process_example(
|
@@ -26,11 +82,13 @@ def process_example(
|
|
26 |
seed: int,
|
27 |
apply_attend_and_excite: bool,
|
28 |
) -> tuple[list[tuple[int, str]], PIL.Image.Image]:
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
return token_table, result
|
35 |
|
36 |
|
@@ -176,11 +234,11 @@ with gr.Blocks(css="style.css") as demo:
|
|
176 |
)
|
177 |
|
178 |
show_token_indices_button.click(
|
179 |
-
fn=
|
180 |
inputs=prompt,
|
181 |
outputs=token_indices_table,
|
182 |
queue=False,
|
183 |
-
api_name=
|
184 |
)
|
185 |
|
186 |
inputs = [
|
@@ -192,37 +250,37 @@ with gr.Blocks(css="style.css") as demo:
|
|
192 |
guidance_scale,
|
193 |
]
|
194 |
prompt.submit(
|
195 |
-
fn=
|
196 |
inputs=prompt,
|
197 |
outputs=token_indices_table,
|
198 |
queue=False,
|
199 |
api_name=False,
|
200 |
).then(
|
201 |
-
fn=
|
202 |
inputs=inputs,
|
203 |
outputs=result,
|
204 |
api_name=False,
|
205 |
)
|
206 |
token_indices_str.submit(
|
207 |
-
fn=
|
208 |
inputs=prompt,
|
209 |
outputs=token_indices_table,
|
210 |
queue=False,
|
211 |
api_name=False,
|
212 |
).then(
|
213 |
-
fn=
|
214 |
inputs=inputs,
|
215 |
outputs=result,
|
216 |
api_name=False,
|
217 |
)
|
218 |
run_button.click(
|
219 |
-
fn=
|
220 |
inputs=prompt,
|
221 |
outputs=token_indices_table,
|
222 |
queue=False,
|
223 |
api_name=False,
|
224 |
).then(
|
225 |
-
fn=
|
226 |
inputs=inputs,
|
227 |
outputs=result,
|
228 |
api_name="run",
|
|
|
6 |
|
7 |
import gradio as gr
|
8 |
import PIL.Image
|
9 |
+
import torch
|
10 |
+
from diffusers import StableDiffusionAttendAndExcitePipeline, StableDiffusionPipeline
|
11 |
|
12 |
DESCRIPTION = """\
|
13 |
# Attend-and-Excite
|
|
|
17 |
Select a prompt and a set of indices matching the subjects you wish to strengthen (the `Check token indices` cell can help map between a word and its index).
|
18 |
"""
|
19 |
|
20 |
+
if not torch.cuda.is_available():
|
21 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
22 |
+
|
23 |
+
if torch.cuda.is_available():
|
24 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
25 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
26 |
+
ax_pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained(model_id)
|
27 |
+
ax_pipe.to(device)
|
28 |
+
sd_pipe = StableDiffusionPipeline.from_pretrained(model_id)
|
29 |
+
sd_pipe.to(device)
|
30 |
+
|
31 |
+
|
32 |
+
def get_token_table(prompt: str) -> list[tuple[int, str]]:
|
33 |
+
tokens = [ax_pipe.tokenizer.decode(t) for t in ax_pipe.tokenizer(prompt)["input_ids"]]
|
34 |
+
tokens = tokens[1:-1]
|
35 |
+
return list(enumerate(tokens, start=1))
|
36 |
+
|
37 |
+
|
38 |
+
def run(
|
39 |
+
prompt: str,
|
40 |
+
indices_to_alter_str: str,
|
41 |
+
seed: int = 0,
|
42 |
+
apply_attend_and_excite: bool = True,
|
43 |
+
num_steps: int = 50,
|
44 |
+
guidance_scale: float = 7.5,
|
45 |
+
scale_factor: int = 20,
|
46 |
+
thresholds: dict[int, float] = {
|
47 |
+
10: 0.5,
|
48 |
+
20: 0.8,
|
49 |
+
},
|
50 |
+
max_iter_to_alter: int = 25,
|
51 |
+
) -> PIL.Image.Image:
|
52 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
53 |
+
|
54 |
+
if apply_attend_and_excite:
|
55 |
+
try:
|
56 |
+
token_indices = list(map(int, indices_to_alter_str.split(",")))
|
57 |
+
except Exception:
|
58 |
+
raise ValueError("Invalid token indices.")
|
59 |
+
out = ax_pipe(
|
60 |
+
prompt=prompt,
|
61 |
+
token_indices=token_indices,
|
62 |
+
guidance_scale=guidance_scale,
|
63 |
+
generator=generator,
|
64 |
+
num_inference_steps=num_steps,
|
65 |
+
max_iter_to_alter=max_iter_to_alter,
|
66 |
+
thresholds=thresholds,
|
67 |
+
scale_factor=scale_factor,
|
68 |
+
)
|
69 |
+
else:
|
70 |
+
out = sd_pipe(
|
71 |
+
prompt=prompt,
|
72 |
+
guidance_scale=guidance_scale,
|
73 |
+
generator=generator,
|
74 |
+
num_inference_steps=num_steps,
|
75 |
+
)
|
76 |
+
return out.images[0]
|
77 |
|
78 |
|
79 |
def process_example(
|
|
|
82 |
seed: int,
|
83 |
apply_attend_and_excite: bool,
|
84 |
) -> tuple[list[tuple[int, str]], PIL.Image.Image]:
|
85 |
+
token_table = get_token_table(prompt)
|
86 |
+
result = run(
|
87 |
+
prompt=prompt,
|
88 |
+
indices_to_alter_str=indices_to_alter_str,
|
89 |
+
seed=seed,
|
90 |
+
apply_attend_and_excite=apply_attend_and_excite,
|
91 |
+
)
|
92 |
return token_table, result
|
93 |
|
94 |
|
|
|
234 |
)
|
235 |
|
236 |
show_token_indices_button.click(
|
237 |
+
fn=get_token_table,
|
238 |
inputs=prompt,
|
239 |
outputs=token_indices_table,
|
240 |
queue=False,
|
241 |
+
api_name="get-token-table",
|
242 |
)
|
243 |
|
244 |
inputs = [
|
|
|
250 |
guidance_scale,
|
251 |
]
|
252 |
prompt.submit(
|
253 |
+
fn=get_token_table,
|
254 |
inputs=prompt,
|
255 |
outputs=token_indices_table,
|
256 |
queue=False,
|
257 |
api_name=False,
|
258 |
).then(
|
259 |
+
fn=run,
|
260 |
inputs=inputs,
|
261 |
outputs=result,
|
262 |
api_name=False,
|
263 |
)
|
264 |
token_indices_str.submit(
|
265 |
+
fn=get_token_table,
|
266 |
inputs=prompt,
|
267 |
outputs=token_indices_table,
|
268 |
queue=False,
|
269 |
api_name=False,
|
270 |
).then(
|
271 |
+
fn=run,
|
272 |
inputs=inputs,
|
273 |
outputs=result,
|
274 |
api_name=False,
|
275 |
)
|
276 |
run_button.click(
|
277 |
+
fn=get_token_table,
|
278 |
inputs=prompt,
|
279 |
outputs=token_indices_table,
|
280 |
queue=False,
|
281 |
api_name=False,
|
282 |
).then(
|
283 |
+
fn=run,
|
284 |
inputs=inputs,
|
285 |
outputs=result,
|
286 |
api_name="run",
|
model.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
import PIL.Image
|
4 |
-
import torch
|
5 |
-
from diffusers import StableDiffusionAttendAndExcitePipeline, StableDiffusionPipeline
|
6 |
-
|
7 |
-
|
8 |
-
class Model:
|
9 |
-
def __init__(self):
|
10 |
-
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
11 |
-
model_id = "CompVis/stable-diffusion-v1-4"
|
12 |
-
self.ax_pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained(model_id)
|
13 |
-
self.ax_pipe.to(self.device)
|
14 |
-
self.sd_pipe = StableDiffusionPipeline.from_pretrained(model_id)
|
15 |
-
self.sd_pipe.to(self.device)
|
16 |
-
|
17 |
-
def get_token_table(self, prompt: str):
|
18 |
-
tokens = [self.ax_pipe.tokenizer.decode(t) for t in self.ax_pipe.tokenizer(prompt)["input_ids"]]
|
19 |
-
tokens = tokens[1:-1]
|
20 |
-
return list(enumerate(tokens, start=1))
|
21 |
-
|
22 |
-
def run(
|
23 |
-
self,
|
24 |
-
prompt: str,
|
25 |
-
indices_to_alter_str: str,
|
26 |
-
seed: int = 0,
|
27 |
-
apply_attend_and_excite: bool = True,
|
28 |
-
num_steps: int = 50,
|
29 |
-
guidance_scale: float = 7.5,
|
30 |
-
scale_factor: int = 20,
|
31 |
-
thresholds: dict[int, float] = {
|
32 |
-
10: 0.5,
|
33 |
-
20: 0.8,
|
34 |
-
},
|
35 |
-
max_iter_to_alter: int = 25,
|
36 |
-
) -> PIL.Image.Image:
|
37 |
-
generator = torch.Generator(device=self.device).manual_seed(seed)
|
38 |
-
|
39 |
-
if apply_attend_and_excite:
|
40 |
-
try:
|
41 |
-
token_indices = list(map(int, indices_to_alter_str.split(",")))
|
42 |
-
except Exception:
|
43 |
-
raise ValueError("Invalid token indices.")
|
44 |
-
out = self.ax_pipe(
|
45 |
-
prompt=prompt,
|
46 |
-
token_indices=token_indices,
|
47 |
-
guidance_scale=guidance_scale,
|
48 |
-
generator=generator,
|
49 |
-
num_inference_steps=num_steps,
|
50 |
-
max_iter_to_alter=max_iter_to_alter,
|
51 |
-
thresholds=thresholds,
|
52 |
-
scale_factor=scale_factor,
|
53 |
-
)
|
54 |
-
else:
|
55 |
-
out = self.sd_pipe(
|
56 |
-
prompt=prompt,
|
57 |
-
guidance_scale=guidance_scale,
|
58 |
-
generator=generator,
|
59 |
-
num_inference_steps=num_steps,
|
60 |
-
)
|
61 |
-
return out.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|