magic-diffusion / app.py
Ashrafb's picture
Update app.py
109feab
import gradio as gr
import os
import sys
import random
import string
import time
from queue import Queue
from threading import Thread
text_gen = gr.load(name="spaces/Ashrafb/MagicPrompt-Stable-Diffusiongust")
proc1 = gr.Interface.load("models/runwayml/stable-diffusion-v1-5")
def get_prompts(prompt_text):
return text_gen(prompt_text)
def restart_script_periodically():
while True:
random_time = random.randint(540, 600)
time.sleep(random_time)
os.execl(sys.executable, sys.executable, *sys.argv)
restart_thread = Thread(target=restart_script_periodically, daemon=True)
restart_thread.start()
queue = Queue()
queue_threshold = 100
def add_random_noise(prompt, noise_level=0.00):
if noise_level == 0:
noise_level = 0.00
percentage_noise = noise_level * 5
num_noise_chars = int(len(prompt) * (percentage_noise / 100))
noise_indices = random.sample(range(len(prompt)), num_noise_chars)
prompt_list = list(prompt)
noise_chars = list(string.ascii_letters + string.punctuation + ' ' + string.digits)
noise_chars.extend(['๐Ÿ˜', '๐Ÿ’ฉ', '๐Ÿ˜‚', '๐Ÿค”', '๐Ÿ˜Š', '๐Ÿค—', '๐Ÿ˜ญ', '๐Ÿ™„', '๐Ÿ˜ท', '๐Ÿคฏ', '๐Ÿคซ', '๐Ÿฅด', '๐Ÿ˜ด', '๐Ÿคฉ', '๐Ÿฅณ', '๐Ÿ˜”', '๐Ÿ˜ฉ', '๐Ÿคช', '๐Ÿ˜‡', '๐Ÿคข', '๐Ÿ˜ˆ', '๐Ÿ‘น', '๐Ÿ‘ป', '๐Ÿค–', '๐Ÿ‘ฝ', '๐Ÿ’€', '๐ŸŽƒ', '๐ŸŽ…', '๐ŸŽ„', '๐ŸŽ', '๐ŸŽ‚', '๐ŸŽ‰', '๐ŸŽˆ', '๐ŸŽŠ', '๐ŸŽฎ', 'โค๏ธ', '๐Ÿ’”', '๐Ÿ’•', '๐Ÿ’–', '๐Ÿ’—', '๐Ÿถ', '๐Ÿฑ', '๐Ÿญ', '๐Ÿน', '๐ŸฆŠ', '๐Ÿป', '๐Ÿจ', '๐Ÿฏ', '๐Ÿฆ', '๐Ÿ˜', '๐Ÿ”ฅ', '๐ŸŒง๏ธ', '๐ŸŒž', '๐ŸŒˆ', '๐Ÿ’ฅ', '๐ŸŒด', '๐ŸŒŠ', '๐ŸŒบ', '๐ŸŒป', '๐ŸŒธ', '๐ŸŽจ', '๐ŸŒ…', '๐ŸŒŒ', 'โ˜๏ธ', 'โ›ˆ๏ธ', 'โ„๏ธ', 'โ˜€๏ธ', '๐ŸŒค๏ธ', 'โ›…๏ธ', '๐ŸŒฅ๏ธ', '๐ŸŒฆ๏ธ', '๐ŸŒง๏ธ', '๐ŸŒฉ๏ธ', '๐ŸŒจ๏ธ', '๐ŸŒซ๏ธ', 'โ˜”๏ธ', '๐ŸŒฌ๏ธ', '๐Ÿ’จ', '๐ŸŒช๏ธ', '๐ŸŒˆ'])
for index in noise_indices:
prompt_list[index] = random.choice(noise_chars)
return "".join(prompt_list)
# Existing code...
import uuid # Import the UUID library
# Existing code...
# Existing code...
request_counter = 0 # Global counter to track requests
def send_it1(inputs, noise_level, proc=proc1):
global request_counter
request_counter += 1
timestamp = f"{time.time()}_{request_counter}"
prompt_with_noise = add_random_noise(inputs, noise_level) + f" - {timestamp}"
try:
while queue.qsize() >= queue_threshold:
time.sleep(2)
queue.put(prompt_with_noise)
output = proc(prompt_with_noise)
return output
except Exception as e:
# Display a generic error message to the user
raise gr.Error("Experiencing high demand. Please retry shortly. Thank you for your patience.")
with gr.Blocks(css="footer{display:none !important;}",) as demo:
gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
Magic Diffusion ๐Ÿช„
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
This Space prettifies your prompt using MagicPrompt
and then runs it through Stable Diffusion to create aesthetically pleasing images. Simply enter a few concepts and let it improve your prompt. You can then diffuse the prompt.
</p>
</div>""")
with gr.Column(elem_id="col-container"):
with gr.Row(variant="compact"):
input_text = gr.Textbox(
lines=4,
label="Short text prompt",
max_lines=8,
placeholder="",
).style(
textarea={'height': '400px'}
)
see_prompts = gr.Button("โœจ Feed in your text! โœจ")
with gr.Row(variant="compact"):
prompt = gr.Textbox(
lines=4,
label="Prettified text prompt",
max_lines=10,
placeholder="Full Prompt",
).style(
textarea={'height': '400px'}
)
run = gr.Button("Diffuse the Prompt!")
with gr.Row():
with gr.Row():
noise_level = gr.Slider(minimum=0.0, maximum=3, step=0.1, label="Noise Level")
with gr.Row():
with gr.Row():
output1 = gr.Image(label="Dreamlike Diffusion 1.0", show_label=False, show_share_button=False)
output2 = gr.Image(label="Dreamlike Diffusion 1.0", show_label=False, show_share_button=False)
output3 = gr.Image(label="Dreamlike Diffusion 1.0", show_label=False, show_share_button=False)
see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt], queue=False)
run.click(send_it1, inputs=[prompt, noise_level], outputs=[output1])
run.click(send_it1, inputs=[prompt, noise_level], outputs=[output2])
run.click(send_it1, inputs=[prompt, noise_level], outputs=[output3])
demo.launch(enable_queue=True, inline=True)