import gradio as gr import os import sys import random import string import time from queue import Queue from threading import Thread text_gen = gr.load(name="spaces/Ashrafb/MagicPrompt-Stable-Diffusiongust") proc1 = gr.Interface.load("models/runwayml/stable-diffusion-v1-5") def get_prompts(prompt_text): return text_gen(prompt_text) def restart_script_periodically(): while True: random_time = random.randint(540, 600) time.sleep(random_time) os.execl(sys.executable, sys.executable, *sys.argv) restart_thread = Thread(target=restart_script_periodically, daemon=True) restart_thread.start() queue = Queue() queue_threshold = 100 def add_random_noise(prompt, noise_level=0.00): if noise_level == 0: noise_level = 0.00 percentage_noise = noise_level * 5 num_noise_chars = int(len(prompt) * (percentage_noise / 100)) noise_indices = random.sample(range(len(prompt)), num_noise_chars) prompt_list = list(prompt) noise_chars = list(string.ascii_letters + string.punctuation + ' ' + string.digits) noise_chars.extend(['😍', 'ðŸ’Đ', '😂', 'ðŸĪ”', '😊', 'ðŸĪ—', '😭', '🙄', '😷', 'ðŸĪŊ', 'ðŸĪŦ', 'ðŸĨī', 'ðŸ˜ī', 'ðŸĪĐ', 'ðŸĨģ', '😔', 'ðŸ˜Đ', 'ðŸĪŠ', '😇', 'ðŸĪĒ', '😈', 'ðŸ‘đ', 'ðŸ‘ŧ', 'ðŸĪ–', 'ðŸ‘―', '💀', '🎃', '🎅', '🎄', '🎁', '🎂', '🎉', '🎈', '🎊', 'ðŸŽŪ', 'âĪïļ', '💔', '💕', '💖', '💗', 'ðŸķ', 'ðŸą', '🐭', 'ðŸđ', 'ðŸĶŠ', 'ðŸŧ', 'ðŸĻ', 'ðŸŊ', 'ðŸĶ', '🐘', 'ðŸ”Ĩ', '🌧ïļ', '🌞', '🌈', 'ðŸ’Ĩ', 'ðŸŒī', '🌊', '🌚', 'ðŸŒŧ', 'ðŸŒļ', 'ðŸŽĻ', '🌅', '🌌', '☁ïļ', '⛈ïļ', '❄ïļ', '☀ïļ', 'ðŸŒĪïļ', '⛅ïļ', 'ðŸŒĨïļ', 'ðŸŒĶïļ', '🌧ïļ', 'ðŸŒĐïļ', 'ðŸŒĻïļ', 'ðŸŒŦïļ', '☔ïļ', '🌎ïļ', 'ðŸ’Ļ', '🌊ïļ', '🌈']) for index in noise_indices: prompt_list[index] = random.choice(noise_chars) return "".join(prompt_list) # Existing code... import uuid # Import the UUID library # Existing code... # Existing code... request_counter = 0 # Global counter to track requests def send_it1(inputs, noise_level, proc=proc1): global request_counter request_counter += 1 timestamp = f"{time.time()}_{request_counter}" prompt_with_noise = add_random_noise(inputs, noise_level) + f" - {timestamp}" try: while queue.qsize() >= queue_threshold: time.sleep(2) queue.put(prompt_with_noise) output = proc(prompt_with_noise) return output except Exception as e: # Display a generic error message to the user raise gr.Error("Experiencing high demand. Please retry shortly. Thank you for your patience.") with gr.Blocks(css="footer{display:none !important;}",) as demo: gr.HTML("""

Magic Diffusion 🊄

This Space prettifies your prompt using MagicPrompt and then runs it through Stable Diffusion to create aesthetically pleasing images. Simply enter a few concepts and let it improve your prompt. You can then diffuse the prompt.

""") with gr.Column(elem_id="col-container"): with gr.Row(variant="compact"): input_text = gr.Textbox( lines=4, label="Short text prompt", max_lines=8, placeholder="", ).style( textarea={'height': '400px'} ) see_prompts = gr.Button("âœĻ Feed in your text! âœĻ") with gr.Row(variant="compact"): prompt = gr.Textbox( lines=4, label="Prettified text prompt", max_lines=10, placeholder="Full Prompt", ).style( textarea={'height': '400px'} ) run = gr.Button("Diffuse the Prompt!") with gr.Row(): with gr.Row(): noise_level = gr.Slider(minimum=0.0, maximum=3, step=0.1, label="Noise Level") with gr.Row(): with gr.Row(): output1 = gr.Image(label="Dreamlike Diffusion 1.0", show_label=False, show_share_button=False) output2 = gr.Image(label="Dreamlike Diffusion 1.0", show_label=False, show_share_button=False) output3 = gr.Image(label="Dreamlike Diffusion 1.0", show_label=False, show_share_button=False) see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt], queue=False) run.click(send_it1, inputs=[prompt, noise_level], outputs=[output1]) run.click(send_it1, inputs=[prompt, noise_level], outputs=[output2]) run.click(send_it1, inputs=[prompt, noise_level], outputs=[output3]) demo.launch(enable_queue=True, inline=True)