MobiLlama / docs /xFasterTransformer.md
Ashmal's picture
Upload folder using huggingface_hub
5472531 verified
# xFasterTransformer Inference Framework
Integrated [xFasterTransformer](https://github.com/intel/xFasterTransformer) customized framework into Fastchat to provide **Faster** inference speed on Intel CPU.
## Install xFasterTransformer
Setup environment (please refer to [this link](https://github.com/intel/xFasterTransformer#installation) for more details):
```bash
pip install xfastertransformer
```
## Prepare models
Prepare Model (please refer to [this link](https://github.com/intel/xFasterTransformer#prepare-model) for more details):
```bash
python ./tools/chatglm_convert.py -i ${HF_DATASET_DIR} -o ${OUTPUT_DIR}
```
## Parameters of xFasterTransformer
--enable-xft to enable xfastertransformer in Fastchat
--xft-max-seq-len to set the max token length the model can process. max token length include input token length.
--xft-dtype to set datatype used in xFasterTransformer for computation. xFasterTransformer can support fp32, fp16, int8, bf16 and hybrid data types like : bf16_fp16, bf16_int8. For datatype details please refer to [this link](https://github.com/intel/xFasterTransformer/wiki/Data-Type-Support-Platform)
Chat with the CLI:
```bash
#run inference on all CPUs and using float16
python3 -m fastchat.serve.cli \
--model-path /path/to/models \
--enable-xft \
--xft-dtype fp16
```
or with numactl on multi-socket server for better performance
```bash
#run inference on numanode 0 and with data type bf16_fp16 (first token uses bfloat16, and rest tokens use float16)
numactl -N 0 --localalloc \
python3 -m fastchat.serve.cli \
--model-path /path/to/models/chatglm2_6b_cpu/ \
--enable-xft \
--xft-dtype bf16_fp16
```
or using MPI to run inference on 2 sockets for better performance
```bash
#run inference on numanode 0 and 1 and with data type bf16_fp16 (first token uses bfloat16, and rest tokens use float16)
OMP_NUM_THREADS=$CORE_NUM_PER_SOCKET LD_PRELOAD=libiomp5.so mpirun \
-n 1 numactl -N 0 --localalloc \
python -m fastchat.serve.cli \
--model-path /path/to/models/chatglm2_6b_cpu/ \
--enable-xft \
--xft-dtype bf16_fp16 : \
-n 1 numactl -N 1 --localalloc \
python -m fastchat.serve.cli \
--model-path /path/to/models/chatglm2_6b_cpu/ \
--enable-xft \
--xft-dtype bf16_fp16
```
Start model worker:
```bash
# Load model with default configuration (max sequence length 4096, no GPU split setting).
python3 -m fastchat.serve.model_worker \
--model-path /path/to/models \
--enable-xft \
--xft-dtype bf16_fp16
```
or with numactl on multi-socket server for better performance
```bash
#run inference on numanode 0 and with data type bf16_fp16 (first token uses bfloat16, and rest tokens use float16)
numactl -N 0 --localalloc python3 -m fastchat.serve.model_worker \
--model-path /path/to/models \
--enable-xft \
--xft-dtype bf16_fp16
```
or using MPI to run inference on 2 sockets for better performance
```bash
#run inference on numanode 0 and 1 and with data type bf16_fp16 (first token uses bfloat16, and rest tokens use float16)
OMP_NUM_THREADS=$CORE_NUM_PER_SOCKET LD_PRELOAD=libiomp5.so mpirun \
-n 1 numactl -N 0 --localalloc python -m fastchat.serve.model_worker \
--model-path /path/to/models \
--enable-xft \
--xft-dtype bf16_fp16 : \
-n 1 numactl -N 1 --localalloc python -m fastchat.serve.model_worker \
--model-path /path/to/models \
--enable-xft \
--xft-dtype bf16_fp16
```
For more details, please refer to [this link](https://github.com/intel/xFasterTransformer#how-to-run)