File size: 2,386 Bytes
372f297
13cb3ce
 
 
eff32bf
 
ff7142e
 
13cb3ce
 
 
 
 
 
 
 
 
 
eff32bf
405f281
 
8a5a456
 
405f281
f59e95f
28471f6
c1dd8ce
 
13cb3ce
eff32bf
 
f59e95f
bc435a1
 
 
8a5a456
28471f6
e9f68f0
8a5a456
 
28471f6
bc435a1
8a5a456
13cb3ce
e9f68f0
13cb3ce
e9f68f0
13cb3ce
405f281
c1dd8ce
13cb3ce
c1dd8ce
8a5a456
 
 
 
13cb3ce
e9f68f0
 
 
 
 
 
 
 
 
 
 
13cb3ce
c1dd8ce
 
 
 
405f281
8a5a456
c1dd8ce
405f281
 
 
 
 
 
 
13cb3ce
372f297
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import gradio as gr
import io
from PIL import Image
import numpy as np

from config import WIDTH, HEIGHT
from models import make_image_controlnet, make_inpainting
from preprocessing import preprocess_seg_mask, get_image, get_mask

def image_to_byte_array(image: Image) -> bytes:
    # BytesIO is a fake file stored in memory
    imgByteArr = io.BytesIO()
    # image.save expects a file as a argument, passing a bytes io ins
    image.save(imgByteArr, format='png')  # image.format
    # Turn the BytesIO object back into a bytes object
    imgByteArr = imgByteArr.getvalue()
    return imgByteArr

def predict(input_img1,
            input_img2,
            positive_prompt,
            negative_prompt,
            num_of_images
            ):

    print("predict")
    # input_img1 = Image.fromarray(input_img1)
    # input_img2 = Image.fromarray(input_img2)

    input_img1 = input_img1.resize((WIDTH, HEIGHT))
    input_img2 = input_img2.resize((WIDTH, WIDTH))

    canvas_mask = np.array(input_img2)
    mask = get_mask(canvas_mask)

    print(input_img1, mask, positive_prompt, negative_prompt)

    retList=[]
    for x in range(num_of_images):
        result_image = make_inpainting(positive_prompt=positive_prompt,
                                   image=input_img1,
                                   mask_image=mask,
                                   negative_prompt=negative_prompt,
                                   )
        retList.append(result_image)

    return retList


app = gr.Interface(
    predict,
    inputs=[gr.Image(label="img", sources=['upload'], type="pil"),
            gr.Image(label="mask", sources=['upload'], type="pil"),
            gr.Textbox(label="positive_prompt"),
            gr.Textbox(label="negative_prompt"),
            gr.Number(label="num_of_images")
            ],
    outputs= [
        gr.Image(label="resp0"),
        gr.Image(label="resp1"),
        gr.Image(label="resp2"),
        gr.Image(label="resp3"),
        gr.Image(label="resp4"),
        gr.Image(label="resp5"),
        gr.Image(label="resp6"),
        gr.Image(label="resp7"),
        gr.Image(label="resp8"),
        gr.Image(label="resp9")],
    title="rem fur 1",
)

app.launch(share=True)

#


# gr.Interface(
#     test1,
#     inputs=[gr.Textbox(label="param1")],
#     outputs= gr.Textbox(label="result"),
#     title="rem fur 1",
# ).launch(share=True)