Spaces:
Sleeping
Sleeping
File size: 2,386 Bytes
372f297 13cb3ce eff32bf ff7142e 13cb3ce eff32bf 405f281 8a5a456 405f281 f59e95f 28471f6 c1dd8ce 13cb3ce eff32bf f59e95f bc435a1 8a5a456 28471f6 e9f68f0 8a5a456 28471f6 bc435a1 8a5a456 13cb3ce e9f68f0 13cb3ce e9f68f0 13cb3ce 405f281 c1dd8ce 13cb3ce c1dd8ce 8a5a456 13cb3ce e9f68f0 13cb3ce c1dd8ce 405f281 8a5a456 c1dd8ce 405f281 13cb3ce 372f297 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import gradio as gr
import io
from PIL import Image
import numpy as np
from config import WIDTH, HEIGHT
from models import make_image_controlnet, make_inpainting
from preprocessing import preprocess_seg_mask, get_image, get_mask
def image_to_byte_array(image: Image) -> bytes:
# BytesIO is a fake file stored in memory
imgByteArr = io.BytesIO()
# image.save expects a file as a argument, passing a bytes io ins
image.save(imgByteArr, format='png') # image.format
# Turn the BytesIO object back into a bytes object
imgByteArr = imgByteArr.getvalue()
return imgByteArr
def predict(input_img1,
input_img2,
positive_prompt,
negative_prompt,
num_of_images
):
print("predict")
# input_img1 = Image.fromarray(input_img1)
# input_img2 = Image.fromarray(input_img2)
input_img1 = input_img1.resize((WIDTH, HEIGHT))
input_img2 = input_img2.resize((WIDTH, WIDTH))
canvas_mask = np.array(input_img2)
mask = get_mask(canvas_mask)
print(input_img1, mask, positive_prompt, negative_prompt)
retList=[]
for x in range(num_of_images):
result_image = make_inpainting(positive_prompt=positive_prompt,
image=input_img1,
mask_image=mask,
negative_prompt=negative_prompt,
)
retList.append(result_image)
return retList
app = gr.Interface(
predict,
inputs=[gr.Image(label="img", sources=['upload'], type="pil"),
gr.Image(label="mask", sources=['upload'], type="pil"),
gr.Textbox(label="positive_prompt"),
gr.Textbox(label="negative_prompt"),
gr.Number(label="num_of_images")
],
outputs= [
gr.Image(label="resp0"),
gr.Image(label="resp1"),
gr.Image(label="resp2"),
gr.Image(label="resp3"),
gr.Image(label="resp4"),
gr.Image(label="resp5"),
gr.Image(label="resp6"),
gr.Image(label="resp7"),
gr.Image(label="resp8"),
gr.Image(label="resp9")],
title="rem fur 1",
)
app.launch(share=True)
#
# gr.Interface(
# test1,
# inputs=[gr.Textbox(label="param1")],
# outputs= gr.Textbox(label="result"),
# title="rem fur 1",
# ).launch(share=True)
|