michaelapplydesign commited on
Commit
ff7142e
·
1 Parent(s): 13cb3ce
Files changed (1) hide show
  1. app.py +15 -18
app.py CHANGED
@@ -1,25 +1,23 @@
1
- # import gradio as gr
2
- #
3
- # def greet(name):
4
- # return "V5 Hello " + name + "!!"
5
- #
6
- # iface = gr.Interface(
7
- # fn=greet,
8
- # inputs="text",
9
- # outputs="text",
10
- # title="MB TEST 1",
11
- # )
12
- # iface.launch(share=True)
13
-
14
  import gradio as gr
15
  from models import make_inpainting
16
  import io
17
  from PIL import Image
18
  import numpy as np
19
 
20
- # from transformers import pipeline
21
- #
22
- # pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  def image_to_byte_array(image: Image) -> bytes:
25
  # BytesIO is a fake file stored in memory
@@ -43,7 +41,7 @@ def predict(input_img1,input_img2):
43
 
44
 
45
  # predictions = pipeline(input_img1)
46
- return input_img1
47
 
48
  gradio_app = gr.Interface(
49
  predict,
@@ -54,6 +52,5 @@ gradio_app = gr.Interface(
54
  title="rem fur 1",
55
  )
56
 
57
-
58
  gradio_app.launch(share=True)
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  from models import make_inpainting
3
  import io
4
  from PIL import Image
5
  import numpy as np
6
 
7
+ from PIL import Image
8
+ from typing import Union
9
+ import random
10
+ import numpy as np
11
+ import os
12
+ import time
13
+
14
+ from models import make_image_controlnet, make_inpainting
15
+ from segmentation import segment_image
16
+ from config import HEIGHT, WIDTH, POS_PROMPT, NEG_PROMPT, COLOR_MAPPING, map_colors, map_colors_rgb
17
+ from palette import COLOR_MAPPING_CATEGORY
18
+ from preprocessing import preprocess_seg_mask, get_image, get_mask
19
+ from explanation import make_inpainting_explanation, make_regeneration_explanation, make_segmentation_explanation
20
+
21
 
22
  def image_to_byte_array(image: Image) -> bytes:
23
  # BytesIO is a fake file stored in memory
 
41
 
42
 
43
  # predictions = pipeline(input_img1)
44
+ return result_image
45
 
46
  gradio_app = gr.Interface(
47
  predict,
 
52
  title="rem fur 1",
53
  )
54
 
 
55
  gradio_app.launch(share=True)
56