File size: 2,302 Bytes
92aa748
 
a2a5b20
92aa748
 
d444637
5950f80
8b7fd62
5950f80
e8bfb0c
5950f80
 
 
 
dc87457
5950f80
 
 
 
dc87457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5950f80
8b7fd62
d444637
3b82920
42e38b7
741c74f
f825554
 
 
 
96f2bb3
f825554
1c07639
 
 
 
 
 
 
 
 
d444637
92aa748
 
d444637
b8f132d
187b87b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
from fastai.vision.all import *
from efficientnet_pytorch import EfficientNet 


title = "COVID_19 Infection Detectation App!"
head = (  
    "<body>"
        "<center>"
            "<img src='/file=Gradcam.png' width=200>"
            "<h2>"
                "This Space demonstrates a model based on efficientnet base model"
            "</h2>"
            "<p>"
                "The Model was trained to classify chest xray image. To test it, Use the Example Images Provided or Upload your own xray images the space provided." 
            "</p>"
            "<p>"
              "The model is trained using [anasmohammedtahir/covidqu(https://www.kaggle.com/datasets/anasmohammedtahir/covidqu) dataset"
            "</p>"
            "<p>
                "The researchers of Qatar University have compiled the COVID-QU-Ex dataset, which consists of 33,920 chest X-ray (CXR) images including:"
            "</p>"
            "<ul>"
              "<li>" 
                    "11,956 COVID-19"
              "</li>"    
              "<li>" 
                    "11,263 Non-COVID infections (Viral or Bacterial Pneumonia)"
              "</li>"     
              "<li>" 
                    "10,701 Normal"
              "</li>"     
            "</ul>"
            "<p>"
                "Ground-truth lung segmentation masks are provided for the entire dataset. This is the largest ever created lung mask dataset."
            "</p>"
    
        "</center>"
    "</body>"
)
description = head

examples = [
    ['covid/covid_1038.png'], ['covid/covid_1034.png'], 
    ['covid/cd.png'], ['covid/covid_1021.png'], 
    ['covid/covid_1027.png'], ['covid/covid_1042.png'], 
    ['covid/covid_1031.png']
]

#learn = load_learner('model/predictcovidfastaifinal18102023.pkl')
learn = load_learner('model/final_20102023_eb7_model.pkl')

categories = learn.dls.vocab

def predict_image(get_image):
   pred, idx, probs = learn.predict(get_image)
   return dict(zip(categories, map(float, probs)))

interpretation="default"
enable_queue=True

gr.Interface(fn=predict_image, inputs=gr.Image(shape=(224,224)),
             outputs = gr.Label(num_top_classes=3),title=title,description=description,examples=examples, interpretation=interpretation,enable_queue=enable_queue).launch(share=False)