Spaces:
Build error
Build error
File size: 2,302 Bytes
92aa748 a2a5b20 92aa748 d444637 5950f80 8b7fd62 5950f80 e8bfb0c 5950f80 dc87457 5950f80 dc87457 5950f80 8b7fd62 d444637 3b82920 42e38b7 741c74f f825554 96f2bb3 f825554 1c07639 d444637 92aa748 d444637 b8f132d 187b87b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import gradio as gr
from fastai.vision.all import *
from efficientnet_pytorch import EfficientNet
title = "COVID_19 Infection Detectation App!"
head = (
"<body>"
"<center>"
"<img src='/file=Gradcam.png' width=200>"
"<h2>"
"This Space demonstrates a model based on efficientnet base model"
"</h2>"
"<p>"
"The Model was trained to classify chest xray image. To test it, Use the Example Images Provided or Upload your own xray images the space provided."
"</p>"
"<p>"
"The model is trained using [anasmohammedtahir/covidqu(https://www.kaggle.com/datasets/anasmohammedtahir/covidqu) dataset"
"</p>"
"<p>
"The researchers of Qatar University have compiled the COVID-QU-Ex dataset, which consists of 33,920 chest X-ray (CXR) images including:"
"</p>"
"<ul>"
"<li>"
"11,956 COVID-19"
"</li>"
"<li>"
"11,263 Non-COVID infections (Viral or Bacterial Pneumonia)"
"</li>"
"<li>"
"10,701 Normal"
"</li>"
"</ul>"
"<p>"
"Ground-truth lung segmentation masks are provided for the entire dataset. This is the largest ever created lung mask dataset."
"</p>"
"</center>"
"</body>"
)
description = head
examples = [
['covid/covid_1038.png'], ['covid/covid_1034.png'],
['covid/cd.png'], ['covid/covid_1021.png'],
['covid/covid_1027.png'], ['covid/covid_1042.png'],
['covid/covid_1031.png']
]
#learn = load_learner('model/predictcovidfastaifinal18102023.pkl')
learn = load_learner('model/final_20102023_eb7_model.pkl')
categories = learn.dls.vocab
def predict_image(get_image):
pred, idx, probs = learn.predict(get_image)
return dict(zip(categories, map(float, probs)))
interpretation="default"
enable_queue=True
gr.Interface(fn=predict_image, inputs=gr.Image(shape=(224,224)),
outputs = gr.Label(num_top_classes=3),title=title,description=description,examples=examples, interpretation=interpretation,enable_queue=enable_queue).launch(share=False)
|