Anthony-Ml commited on
Commit
d444637
·
1 Parent(s): d34cdf9

Update app.py

Browse files

Added Html text

Files changed (1) hide show
  1. app.py +12 -18
app.py CHANGED
@@ -11,7 +11,15 @@ def predict_image(get_image):
11
  pred, idx, probs = learn.predict(get_image)
12
  return dict(zip(categories, map(float, probs)))
13
 
14
- title = "Detect COVID_19 Infection Xray Chest Images"
 
 
 
 
 
 
 
 
15
  description = """
16
  This Space demonstrates model based on efficientnet base model.
17
 
@@ -27,25 +35,11 @@ examples = [
27
  #["Covid Xray Image 7","covid/covid_1031.png"]
28
  ]
29
  article="<p style='text-align: center'><a href='https://www.kaggle.com/datasets/anasmohammedtahir/covidqu' target='_blank'>COVID-QU-Ex Dataset</a></p>"
30
- interpretation="shap"
31
  num_shap=5
32
  enable_queue=True
33
 
34
 
35
- gr.Interface(fn=predict_image,
36
- inputs=[gr.Image(shape=(224,224)),
37
- gr.inputs.Textbox(
38
- label="Target Text",
39
- lines=1),
40
- gr.inputs.Image(
41
- label='Input Image'),
42
- gr.inputs.Textbox(
43
- label="Class Type")
44
- ],
45
- outputs = gr.Label(num_top_classes=3),
46
- title=title,description=description,
47
- examples=examples,
48
- article=article,
49
- interpretation=interpretation,
50
- enable_queue=enable_queue).launch(share=False)
51
 
 
11
  pred, idx, probs = learn.predict(get_image)
12
  return dict(zip(categories, map(float, probs)))
13
 
14
+ title = "COVID_19 Infection Detectation App!"
15
+
16
+ head = (
17
+ "<center>"
18
+ "<img src='covid/cd.png' width=400>"
19
+ "The robot was trained to classify chest xray image. To test it, Use the Example Images Provided or Upload your own xray images the space provided."
20
+ "</center>"
21
+ )
22
+
23
  description = """
24
  This Space demonstrates model based on efficientnet base model.
25
 
 
35
  #["Covid Xray Image 7","covid/covid_1031.png"]
36
  ]
37
  article="<p style='text-align: center'><a href='https://www.kaggle.com/datasets/anasmohammedtahir/covidqu' target='_blank'>COVID-QU-Ex Dataset</a></p>"
38
+ interpretation="default"
39
  num_shap=5
40
  enable_queue=True
41
 
42
 
43
+ gr.Interface(fn=predict_image, inputs=gr.Image(shape=(224,224)),
44
+ outputs = gr.Label(num_top_classes=3),title=title,description=description,examples=examples, article=article, interpretation=interpretation,enable_queue=enable_queue).launch(share=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45