File size: 2,448 Bytes
92aa748
 
a2a5b20
92aa748
 
d444637
5950f80
8b7fd62
5950f80
e8bfb0c
5950f80
6d3de44
5950f80
c0f4c8a
6d3de44
c0f4c8a
 
 
 
 
a2d2814
 
 
 
415fd74
6d3de44
dc87457
 
 
 
 
 
 
 
 
 
 
 
 
a2d2814
dc87457
8b7fd62
d444637
3b82920
42e38b7
741c74f
f825554
 
 
 
96f2bb3
f825554
1c07639
 
 
 
 
 
 
 
 
d444637
92aa748
 
d444637
b8f132d
187b87b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
from fastai.vision.all import *
from efficientnet_pytorch import EfficientNet 


title = "COVID_19 Infection Detectation App!"
head = (  
    "<body>"
        "<center>"
            "<img src='/file=Gradcam.png' width=200>"
            "<h2>"
                "This Space demonstrates a model based on efficientnetB7 base model. The Model was trained to classify chest xray image. To test it, "
            "</h2>"
            "<h3>"
                "Use the Example Images provided below the up or Upload your own xray images with the App." 
            "</h3>"
            "<h3>"
                "!!!PLEASE NOTE MODEL WAS TRAINED and VALIDATED USING PNG FILES!!!" 
            "</h3>"
    "</center>"
        
            "<b>"
                "<a href='https://www.kaggle.com/datasets/anasmohammedtahir/covidqu'>The model is trained using COVID-QU-Ex dataset</a>" 
            "</b>"    
            "<p>"
                "The researchers of Qatar University compiled COVID-QU-Ex dataset, which consists of 33,920 chest X-ray (CXR) images including:"
            "</p>"
            "<ul>"
              "<li>" 
                    "11,956 COVID-19"
              "</li>"    
              "<li>" 
                    "11,263 Non-COVID infections (Viral or Bacterial Pneumonia)"
              "</li>"     
              "<li>" 
                    "10,701 Normal"
              "</li>"     
            "</ul>"
            "<p>"
                "Thanks to Kaggle & KaggleX, this is the largest ever created lung mask dataset, that I am aware of publicly available as of October 2023."
            "</p>"
    "</body>"
)
description = head

examples = [
    ['covid/covid_1038.png'], ['covid/covid_1034.png'], 
    ['covid/cd.png'], ['covid/covid_1021.png'], 
    ['covid/covid_1027.png'], ['covid/covid_1042.png'], 
    ['covid/covid_1031.png']
]

#learn = load_learner('model/predictcovidfastaifinal18102023.pkl')
learn = load_learner('model/final_20102023_eb7_model.pkl')

categories = learn.dls.vocab

def predict_image(get_image):
   pred, idx, probs = learn.predict(get_image)
   return dict(zip(categories, map(float, probs)))

interpretation="default"
enable_queue=True

gr.Interface(fn=predict_image, inputs=gr.Image(shape=(224,224)),
             outputs = gr.Label(num_top_classes=3),title=title,description=description,examples=examples, interpretation=interpretation,enable_queue=enable_queue).launch(share=False)