Spaces:
Sleeping
Sleeping
File size: 3,392 Bytes
f32f4fc 57defe3 f32f4fc e5e68c0 1629dbf e5e68c0 1629dbf e5e68c0 1629dbf e5e68c0 1629dbf e70fe62 1629dbf e70fe62 1629dbf 55356d5 e5e68c0 1629dbf e5e68c0 89c24b9 e70fe62 1629dbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# ### Keywords to Title Generator
# - https://huggingface.co/EnglishVoice/t5-base-keywords-to-headline?text=diabetic+diet+plan
# - Apache 2.0
import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer
import gradio as gr
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = T5ForConditionalGeneration.from_pretrained("EnglishVoice/t5-base-keywords-to-headline")
tokenizer = T5Tokenizer.from_pretrained("EnglishVoice/t5-base-keywords-to-headline", clean_up_tokenization_spaces=True, legacy=False)
model = model.to(device)
def title_gen(keywords, diversity, temp):
if keywords!= "":
text = "headline: " + keywords
encoding = tokenizer.encode_plus(text, return_tensors = "pt")
input_ids = encoding["input_ids"].to(device)
attention_masks = encoding["attention_mask"].to(device)
if diversity:
num_beams = 20,
num_beam_groups = 20,
diversity_penalty=0.8,
early_stopping = True,
else:
penalty_alpha = 0.8,
beam_outputs = model.generate(
input_ids = input_ids,
attention_mask = attention_masks,
max_new_tokens = 30,
do_sample = True,
num_return_sequences = 5,
temperature = temp,
top_k = 15,
no_repeat_ngram_size = 3,
#top_p = 0.60,
)
titles = "<p align=center>Title Suggestions:</p>"
for i in range(len(beam_outputs)):
result = tokenizer.decode(beam_outputs[i], skip_special_tokens=True)
titles += f"<p align=center><b>{result}</b></p></p>" #Create string with titles and <br> tag for html reading in gradio html
return titles
iface = gr.Interface(fn=title_gen,
inputs=[gr.Textbox(label="Paste one or more keywords searated by a comma and hit 'Submit'.", lines=1), "checkbox", gr.Slider(0.1, 1.9, 1.2)],
outputs=[gr.HTML(label="Title suggestions:")],
title="AI Keywords to Title Generator",
#description="Turn keywords into creative suggestions",
article="<div align=left><h1>AI Creative Title Generator</h1><li>With just keywords, generate a list of creative titles.</li><li>Click on Submit to generate more title options.</li><li>Tweak slider for less or more creative titles</li><li>Check 'diversity' to turn on diversity beam search</li><p>AI Model:<br><li>T5 Model trained on a dataset of titles and related keywords</li><li>Original model id: EnglishVoice/t5-base-keywords-to-headline by English Voice AI Labs</li></p><p>Default parameter details:<br><li><code>temperature = 1.2</code>, <code>no_repeat_ngram_size=3</code>, <code>top_k = 15</code>, <code>penalty_alpha = 0.8</code>, <code>max_new_tokens = 30</code></li><p>Diversity beam search params:<br><li><code>num_beams=20</code>, <code>diversity_penalty=0.8</code>, <code>num_beam_groups=20</code></li></div>",
flagging_mode='never',
examples=[
["new, weight loss, lifestyle"],
["launch, free, dating, app"],
["AI, text to video, app"],
["new movie, watch, free streaming"],
],
cache_examples=True,
)
iface.launch()
|