Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,8 @@
|
|
5 |
# - https://huggingface.co/EnglishVoice/t5-base-keywords-to-headline?text=diabetic+diet+plan
|
6 |
# - Apache 2.0
|
7 |
|
|
|
|
|
8 |
|
9 |
import torch
|
10 |
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
@@ -15,32 +17,83 @@ model = T5ForConditionalGeneration.from_pretrained("EnglishVoice/t5-base-keyword
|
|
15 |
tokenizer = T5Tokenizer.from_pretrained("EnglishVoice/t5-base-keywords-to-headline", clean_up_tokenization_spaces=True, legacy=False)
|
16 |
model = model.to(device)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
|
46 |
'''
|
@@ -90,6 +143,21 @@ demo.launch()
|
|
90 |
'''
|
91 |
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
|
95 |
|
|
|
5 |
# - https://huggingface.co/EnglishVoice/t5-base-keywords-to-headline?text=diabetic+diet+plan
|
6 |
# - Apache 2.0
|
7 |
|
8 |
+
# In[2]:
|
9 |
+
|
10 |
|
11 |
import torch
|
12 |
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
|
|
17 |
tokenizer = T5Tokenizer.from_pretrained("EnglishVoice/t5-base-keywords-to-headline", clean_up_tokenization_spaces=True, legacy=False)
|
18 |
model = model.to(device)
|
19 |
|
20 |
+
|
21 |
+
|
22 |
+
# In[5]:
|
23 |
+
|
24 |
+
|
25 |
+
def title_gen(keywords):
|
26 |
+
|
27 |
+
text = "headline: " + keywords
|
28 |
+
encoding = tokenizer.encode_plus(text, return_tensors = "pt")
|
29 |
+
input_ids = encoding["input_ids"].to(device)
|
30 |
+
attention_masks = encoding["attention_mask"].to(device)
|
31 |
+
beam_outputs = model.generate(
|
32 |
+
input_ids = input_ids,
|
33 |
+
attention_mask = attention_masks,
|
34 |
+
max_new_tokens = 30,
|
35 |
+
do_sample = True,
|
36 |
+
num_return_sequences = 5,
|
37 |
+
temperature = 1.2,
|
38 |
+
#num_beams = 20,
|
39 |
+
#num_beam_groups = 20,
|
40 |
+
#diversity_penalty=0.8,
|
41 |
+
no_repeat_ngram_size = 3,
|
42 |
+
penalty_alpha = 0.8,
|
43 |
+
#early_stopping = True,
|
44 |
+
top_k = 15,
|
45 |
+
#top_p = 0.60,
|
46 |
+
)
|
47 |
+
|
48 |
+
titles = ""
|
49 |
+
|
50 |
+
for i in range(len(beam_outputs)):
|
51 |
+
result = tokenizer.decode(beam_outputs[i], skip_special_tokens=True)
|
52 |
+
titles += f"{result}<br>" #Create string with titles and <br> tag for html reading in gradio html
|
53 |
+
|
54 |
+
return titles
|
55 |
+
|
56 |
+
|
57 |
+
# In[1]:
|
58 |
+
|
59 |
+
|
60 |
+
import gradio as gr
|
61 |
+
|
62 |
+
|
63 |
+
# In[ ]:
|
64 |
+
|
65 |
+
|
66 |
+
iface = gr.Interface(fn=paraphrase,
|
67 |
+
inputs=[gr.Textbox(label="Paste 2 or more keywords searated by a comma.", lines=1), "checkbox", gr.Slider(0.1, 2, 0.8)],
|
68 |
+
outputs=[gr.HTML(label="Titles:")],
|
69 |
+
title="AI Keywords to Title Generator",
|
70 |
+
description="Turn keywords into creative suggestions",
|
71 |
+
article="<div align=left><h1>AI Creative Title Generator</h1><li>With just keywords, generate a list of creative titles.</li><li>Click on Submit to generate more creative and diverse titles.</li><p>AI Model:<br><li>T5 Model trained on a dataset of titles and related keywords</li><li>Original model id: EnglishVoice/t5-base-keywords-to-headline by English Voice AI Labs</li></p><p>Default parameter details:<br><li>Temperature = 1.2, no_repeat_ngram_size=3, top_k = 15, penalty_alpha = 0.8, max_new_tokens = 30</li></div>",
|
72 |
+
flagging_mode='never'
|
73 |
+
)
|
74 |
+
|
75 |
+
iface.launch()
|
76 |
+
|
77 |
+
|
78 |
+
# In[ ]:
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
# In[ ]:
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
# In[ ]:
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
# In[ ]:
|
97 |
|
98 |
|
99 |
'''
|
|
|
143 |
'''
|
144 |
|
145 |
|
146 |
+
# In[164]:
|
147 |
+
|
148 |
+
|
149 |
+
import gc
|
150 |
+
gc.collect()
|
151 |
+
|
152 |
+
|
153 |
+
# In[166]:
|
154 |
+
|
155 |
+
|
156 |
+
gr.close_all()
|
157 |
+
|
158 |
+
|
159 |
+
# In[ ]:
|
160 |
+
|
161 |
|
162 |
|
163 |
|