Spaces:
No application file
No application file
import pandas as pd | |
import numpy as np | |
import streamlit as st | |
import altair as alt | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from PIL import Image | |
import base64 | |
# Functions | |
def main(): | |
st.title("Sentiment Analysis App") | |
st.subheader("Reformation Team Project") | |
st.image("senti.jpg") | |
# Define the available models | |
models = { | |
"ROBERTA": "Adoley/covid-tweets-sentiment-analysis-roberta-model", | |
"BERT": "Adoley/covid-tweets-sentiment-analysis", | |
"DISTILBERT": "Adoley/covid-tweets-sentiment-analysis-distilbert-model" | |
} | |
menu = ["Home", "About"] | |
choice = st.sidebar.selectbox("Menu", menu) | |
how_to_use = """ | |
## How to Use | |
1. Enter your text in the input box. | |
2. Click the **Analyze Sentiment** button. | |
3. Wait for the app to process the text and display the sentiment analysis results. | |
4. Explore the sentiment scores and visualization provided. | |
""" | |
# Add the "How to Use" message to the sidebar | |
st.sidebar.markdown(how_to_use) | |
if choice == "Home": | |
st.subheader("Home") | |
# Add a dropdown menu to select the model | |
model_name = st.selectbox("Select a model", list(models.keys())) | |
with st.form(key="nlpForm"): | |
raw_text = st.text_area("Enter Text Here") | |
submit_button = st.form_submit_button(label="Analyze") | |
col1, col2 = st.columns(2) | |
if submit_button: | |
# Display sound-effect | |
st.info("🔮 Abracadabra! Your report has been submitted!") | |
sound_file = 'C:/Users/viole/OneDrive/Documents/streamlit2/swipe-swoosh.mp3' | |
st.audio(sound_file, format='audio/wav') | |
with col1: | |
st.info("Results") | |
tokenizer = AutoTokenizer.from_pretrained(models[model_name]) | |
model = AutoModelForSequenceClassification.from_pretrained(models[model_name]) | |
# Tokenize the input text | |
inputs = tokenizer(raw_text, return_tensors="pt") | |
# Make a forward pass through the model | |
outputs = model(**inputs) | |
# Get the predicted class and associated score | |
predicted_class = outputs.logits.argmax().item() | |
score = outputs.logits.softmax(dim=1)[0][predicted_class].item() | |
# Compute the scores for all sentiments | |
positive_score = outputs.logits.softmax(dim=1)[0][2].item() | |
negative_score = outputs.logits.softmax(dim=1)[0][0].item() | |
neutral_score = outputs.logits.softmax(dim=1)[0][1].item() | |
# Compute the confidence level | |
confidence_level = np.max(outputs.logits.detach().numpy()) | |
# Print the predicted class and associated score | |
st.write(f"Predicted class: {predicted_class}, Score: {score:.3f}, Confidence Level: {confidence_level:.2f}") | |
# Emoji | |
if predicted_class == 2: | |
st.markdown("Sentiment: Positive :smiley:") | |
st.image("positive-smiley-face.png") | |
elif predicted_class == 1: | |
st.markdown("Sentiment: Neutral :😐:") | |
st.image("neutral-smiley-face.png") | |
else: | |
st.markdown("Sentiment: Negative :angry:") | |
st.image("negative-smiley-face.png") | |
results_df = pd.DataFrame(columns=["Sentiment Class", "Score"]) | |
# Create a DataFrame with scores for all sentiments | |
all_scores_df = pd.DataFrame({ | |
'Sentiment Class': ['Positive', 'Negative', 'Neutral'], | |
'Score': [positive_score, negative_score, neutral_score] | |
}) | |
# Concatenate the two DataFrames | |
results_df = pd.concat([results_df, all_scores_df], ignore_index=True) | |
# Create the Altair chart | |
chart = alt.Chart(results_df).mark_bar(width=50).encode( | |
x="Sentiment Class", | |
y="Score", | |
color="Sentiment Class" | |
) | |
# Display the chart | |
with col2: | |
st.altair_chart(chart, use_container_width=True) | |
st.write(results_df) | |
else: | |
st.subheader("About") | |
st.write("This marvelous sentiment analysis NLP app, crafted with love by the brilliant minds of Team Reformation, dives into the realm of Covid-19 tweets. Armed with a pre-trained model, it fearlessly predicts the sentiment lurking within the depths of your text. Brace yourself for an adventure of teamwork and collaboration, as we embark on a quest to unravel the sentiments that dwell within the tweetsphere!") | |
if __name__ == "__main__": | |
main() | |