personal_app / sentimentapp.py
violetteallotey
Application file
301eec3
import pandas as pd
import numpy as np
import streamlit as st
import altair as alt
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from PIL import Image
import base64
# Functions
def main():
st.title("Sentiment Analysis App")
st.subheader("Reformation Team Project")
st.image("senti.jpg")
# Define the available models
models = {
"ROBERTA": "Adoley/covid-tweets-sentiment-analysis-roberta-model",
"BERT": "Adoley/covid-tweets-sentiment-analysis",
"DISTILBERT": "Adoley/covid-tweets-sentiment-analysis-distilbert-model"
}
menu = ["Home", "About"]
choice = st.sidebar.selectbox("Menu", menu)
how_to_use = """
## How to Use
1. Enter your text in the input box.
2. Click the **Analyze Sentiment** button.
3. Wait for the app to process the text and display the sentiment analysis results.
4. Explore the sentiment scores and visualization provided.
"""
# Add the "How to Use" message to the sidebar
st.sidebar.markdown(how_to_use)
if choice == "Home":
st.subheader("Home")
# Add a dropdown menu to select the model
model_name = st.selectbox("Select a model", list(models.keys()))
with st.form(key="nlpForm"):
raw_text = st.text_area("Enter Text Here")
submit_button = st.form_submit_button(label="Analyze")
col1, col2 = st.columns(2)
if submit_button:
# Display sound-effect
st.info("🔮 Abracadabra! Your report has been submitted!")
sound_file = 'C:/Users/viole/OneDrive/Documents/streamlit2/swipe-swoosh.mp3'
st.audio(sound_file, format='audio/wav')
with col1:
st.info("Results")
tokenizer = AutoTokenizer.from_pretrained(models[model_name])
model = AutoModelForSequenceClassification.from_pretrained(models[model_name])
# Tokenize the input text
inputs = tokenizer(raw_text, return_tensors="pt")
# Make a forward pass through the model
outputs = model(**inputs)
# Get the predicted class and associated score
predicted_class = outputs.logits.argmax().item()
score = outputs.logits.softmax(dim=1)[0][predicted_class].item()
# Compute the scores for all sentiments
positive_score = outputs.logits.softmax(dim=1)[0][2].item()
negative_score = outputs.logits.softmax(dim=1)[0][0].item()
neutral_score = outputs.logits.softmax(dim=1)[0][1].item()
# Compute the confidence level
confidence_level = np.max(outputs.logits.detach().numpy())
# Print the predicted class and associated score
st.write(f"Predicted class: {predicted_class}, Score: {score:.3f}, Confidence Level: {confidence_level:.2f}")
# Emoji
if predicted_class == 2:
st.markdown("Sentiment: Positive :smiley:")
st.image("positive-smiley-face.png")
elif predicted_class == 1:
st.markdown("Sentiment: Neutral :😐:")
st.image("neutral-smiley-face.png")
else:
st.markdown("Sentiment: Negative :angry:")
st.image("negative-smiley-face.png")
results_df = pd.DataFrame(columns=["Sentiment Class", "Score"])
# Create a DataFrame with scores for all sentiments
all_scores_df = pd.DataFrame({
'Sentiment Class': ['Positive', 'Negative', 'Neutral'],
'Score': [positive_score, negative_score, neutral_score]
})
# Concatenate the two DataFrames
results_df = pd.concat([results_df, all_scores_df], ignore_index=True)
# Create the Altair chart
chart = alt.Chart(results_df).mark_bar(width=50).encode(
x="Sentiment Class",
y="Score",
color="Sentiment Class"
)
# Display the chart
with col2:
st.altair_chart(chart, use_container_width=True)
st.write(results_df)
else:
st.subheader("About")
st.write("This marvelous sentiment analysis NLP app, crafted with love by the brilliant minds of Team Reformation, dives into the realm of Covid-19 tweets. Armed with a pre-trained model, it fearlessly predicts the sentiment lurking within the depths of your text. Brace yourself for an adventure of teamwork and collaboration, as we embark on a quest to unravel the sentiments that dwell within the tweetsphere!")
if __name__ == "__main__":
main()