Spaces:
No application file
No application file
violetteallotey
commited on
Commit
•
301eec3
1
Parent(s):
08477fe
Application file
Browse files- dockerfile +33 -0
- negative-smiley-face.png +0 -0
- neutral-smiley-face.png +0 -0
- positive-smiley-face.png +0 -0
- requirements.txt +8 -0
- senti.jpg +0 -0
- sentimentapp.py +137 -0
- swipe-swoosh.mp3 +0 -0
dockerfile
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
#This creates a directory for your app. Do not change anything here
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
#This also makes your directory for the cache writable. DO not change anything here
|
6 |
+
RUN mkdir -p /.cache/huggingface/hub && chmod -R 777 /.cache
|
7 |
+
|
8 |
+
# This creates a virtual environment for your app on your hugging face. Dont change anything here as well
|
9 |
+
ENV TRANSFORMERS_CACHE /.cache/huggingface/hub
|
10 |
+
|
11 |
+
#This copies the requirement to your hugging face account. Do not change anything
|
12 |
+
COPY requirements.txt .
|
13 |
+
|
14 |
+
# This copies your streamlit app to your hugging face
|
15 |
+
# change 'sentimentappstreamlit.py' to the actual name of your app. There is one space and a (fullstop)after the name of your app
|
16 |
+
COPY sentimentapp.py .
|
17 |
+
|
18 |
+
#If you used any picture in your application,first make sure its in the same path as your app.
|
19 |
+
#This code copies the picture unto your hugging face.
|
20 |
+
COPY senti.jpg .
|
21 |
+
COPY negative-smiley-face.png .
|
22 |
+
COPY positive-smiley-face.png .
|
23 |
+
COPY neutral-smiley-face.png .
|
24 |
+
COPY swipe-swoosh.mp3 .
|
25 |
+
|
26 |
+
|
27 |
+
RUN pip3 install --upgrade pip
|
28 |
+
|
29 |
+
RUN pip3 install -r requirements.txt
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
CMD ["streamlit","run","sentimentapp.py", "--server.address", "0.0.0.0", "--server.port", "7860", "--browser.serverAddress", "Adoley/personal_app.hf.space", "--browser.serverAddress","0.0.0.0:7860"]
|
negative-smiley-face.png
ADDED
neutral-smiley-face.png
ADDED
positive-smiley-face.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==0.93.0
|
2 |
+
transformers==4.11.3
|
3 |
+
torch==1.9.0
|
4 |
+
pandas==1.3.4
|
5 |
+
altair==4.1.0
|
6 |
+
textblob==0.15.3
|
7 |
+
vaderSentiment==3.5.1
|
8 |
+
Pillow==8.4.0
|
senti.jpg
ADDED
sentimentapp.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
import altair as alt
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
+
from PIL import Image
|
7 |
+
import base64
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# Functions
|
15 |
+
def main():
|
16 |
+
st.title("Sentiment Analysis App")
|
17 |
+
st.subheader("Reformation Team Project")
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
st.image("senti.jpg")
|
22 |
+
|
23 |
+
# Define the available models
|
24 |
+
models = {
|
25 |
+
"ROBERTA": "Adoley/covid-tweets-sentiment-analysis-roberta-model",
|
26 |
+
"BERT": "Adoley/covid-tweets-sentiment-analysis",
|
27 |
+
"DISTILBERT": "Adoley/covid-tweets-sentiment-analysis-distilbert-model"
|
28 |
+
}
|
29 |
+
|
30 |
+
menu = ["Home", "About"]
|
31 |
+
choice = st.sidebar.selectbox("Menu", menu)
|
32 |
+
|
33 |
+
how_to_use = """
|
34 |
+
## How to Use
|
35 |
+
|
36 |
+
1. Enter your text in the input box.
|
37 |
+
2. Click the **Analyze Sentiment** button.
|
38 |
+
3. Wait for the app to process the text and display the sentiment analysis results.
|
39 |
+
4. Explore the sentiment scores and visualization provided.
|
40 |
+
"""
|
41 |
+
|
42 |
+
# Add the "How to Use" message to the sidebar
|
43 |
+
st.sidebar.markdown(how_to_use)
|
44 |
+
|
45 |
+
if choice == "Home":
|
46 |
+
st.subheader("Home")
|
47 |
+
|
48 |
+
# Add a dropdown menu to select the model
|
49 |
+
model_name = st.selectbox("Select a model", list(models.keys()))
|
50 |
+
|
51 |
+
with st.form(key="nlpForm"):
|
52 |
+
raw_text = st.text_area("Enter Text Here")
|
53 |
+
submit_button = st.form_submit_button(label="Analyze")
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
col1, col2 = st.columns(2)
|
58 |
+
if submit_button:
|
59 |
+
# Display sound-effect
|
60 |
+
st.info("🔮 Abracadabra! Your report has been submitted!")
|
61 |
+
sound_file = 'C:/Users/viole/OneDrive/Documents/streamlit2/swipe-swoosh.mp3'
|
62 |
+
st.audio(sound_file, format='audio/wav')
|
63 |
+
|
64 |
+
with col1:
|
65 |
+
st.info("Results")
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(models[model_name])
|
67 |
+
model = AutoModelForSequenceClassification.from_pretrained(models[model_name])
|
68 |
+
|
69 |
+
|
70 |
+
# Tokenize the input text
|
71 |
+
inputs = tokenizer(raw_text, return_tensors="pt")
|
72 |
+
|
73 |
+
# Make a forward pass through the model
|
74 |
+
outputs = model(**inputs)
|
75 |
+
|
76 |
+
# Get the predicted class and associated score
|
77 |
+
predicted_class = outputs.logits.argmax().item()
|
78 |
+
score = outputs.logits.softmax(dim=1)[0][predicted_class].item()
|
79 |
+
|
80 |
+
# Compute the scores for all sentiments
|
81 |
+
positive_score = outputs.logits.softmax(dim=1)[0][2].item()
|
82 |
+
negative_score = outputs.logits.softmax(dim=1)[0][0].item()
|
83 |
+
neutral_score = outputs.logits.softmax(dim=1)[0][1].item()
|
84 |
+
|
85 |
+
# Compute the confidence level
|
86 |
+
confidence_level = np.max(outputs.logits.detach().numpy())
|
87 |
+
|
88 |
+
# Print the predicted class and associated score
|
89 |
+
st.write(f"Predicted class: {predicted_class}, Score: {score:.3f}, Confidence Level: {confidence_level:.2f}")
|
90 |
+
|
91 |
+
# Emoji
|
92 |
+
if predicted_class == 2:
|
93 |
+
st.markdown("Sentiment: Positive :smiley:")
|
94 |
+
st.image("positive-smiley-face.png")
|
95 |
+
elif predicted_class == 1:
|
96 |
+
st.markdown("Sentiment: Neutral :😐:")
|
97 |
+
st.image("neutral-smiley-face.png")
|
98 |
+
else:
|
99 |
+
st.markdown("Sentiment: Negative :angry:")
|
100 |
+
st.image("negative-smiley-face.png")
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
results_df = pd.DataFrame(columns=["Sentiment Class", "Score"])
|
105 |
+
|
106 |
+
# Create a DataFrame with scores for all sentiments
|
107 |
+
all_scores_df = pd.DataFrame({
|
108 |
+
'Sentiment Class': ['Positive', 'Negative', 'Neutral'],
|
109 |
+
'Score': [positive_score, negative_score, neutral_score]
|
110 |
+
})
|
111 |
+
|
112 |
+
# Concatenate the two DataFrames
|
113 |
+
|
114 |
+
results_df = pd.concat([results_df, all_scores_df], ignore_index=True)
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
# Create the Altair chart
|
119 |
+
chart = alt.Chart(results_df).mark_bar(width=50).encode(
|
120 |
+
x="Sentiment Class",
|
121 |
+
y="Score",
|
122 |
+
color="Sentiment Class"
|
123 |
+
)
|
124 |
+
|
125 |
+
# Display the chart
|
126 |
+
with col2:
|
127 |
+
st.altair_chart(chart, use_container_width=True)
|
128 |
+
st.write(results_df)
|
129 |
+
|
130 |
+
else:
|
131 |
+
st.subheader("About")
|
132 |
+
st.write("This marvelous sentiment analysis NLP app, crafted with love by the brilliant minds of Team Reformation, dives into the realm of Covid-19 tweets. Armed with a pre-trained model, it fearlessly predicts the sentiment lurking within the depths of your text. Brace yourself for an adventure of teamwork and collaboration, as we embark on a quest to unravel the sentiments that dwell within the tweetsphere!")
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
if __name__ == "__main__":
|
137 |
+
main()
|
swipe-swoosh.mp3
ADDED
Binary file (11.8 kB). View file
|
|