revert predict wrapper
Browse files
app.py
CHANGED
@@ -10,19 +10,9 @@ X, y = load_linnerud(return_X_y=True, as_frame=True)
|
|
10 |
regr = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y)
|
11 |
# example usage: regr.predict(X.iloc[[0]])
|
12 |
|
13 |
-
|
14 |
-
def predict(X):
|
15 |
-
max_rows = 100000
|
16 |
-
if X.shape[0] > max_rows:
|
17 |
-
raise ValueError(
|
18 |
-
f"Too many rows ({X.shape[0]}), please use less than {max_rows} rows."
|
19 |
-
)
|
20 |
-
return regr.predict(X)
|
21 |
-
|
22 |
-
|
23 |
iface = gr.Interface(
|
24 |
title="MultiOutputRegressor Example",
|
25 |
-
fn=predict,
|
26 |
inputs=gr.Dataframe(
|
27 |
value=X.head(1),
|
28 |
headers=list(X.columns),
|
@@ -38,3 +28,13 @@ iface = gr.Interface(
|
|
38 |
),
|
39 |
)
|
40 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
regr = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y)
|
11 |
# example usage: regr.predict(X.iloc[[0]])
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
iface = gr.Interface(
|
14 |
title="MultiOutputRegressor Example",
|
15 |
+
fn=regr.predict,
|
16 |
inputs=gr.Dataframe(
|
17 |
value=X.head(1),
|
18 |
headers=list(X.columns),
|
|
|
28 |
),
|
29 |
)
|
30 |
iface.launch()
|
31 |
+
|
32 |
+
# %% Code Graveyard
|
33 |
+
|
34 |
+
# def predict(X):
|
35 |
+
# max_rows = 100000
|
36 |
+
# if X.shape[0] > max_rows:
|
37 |
+
# raise ValueError(
|
38 |
+
# f"Too many rows ({X.shape[0]}), please use less than {max_rows} rows."
|
39 |
+
# )
|
40 |
+
# return regr.predict(X)
|