api example and max rows workaround
Browse files- api_example.py +35 -0
- app.py +12 -2
api_example.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from gradio_client import Client
|
2 |
+
from sklearn.datasets import load_linnerud
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from time import time
|
6 |
+
|
7 |
+
X, y = load_linnerud(return_X_y=True, as_frame=True)
|
8 |
+
|
9 |
+
# create a dataframe with 1000 randomly generated values for predicting
|
10 |
+
rng = np.random.default_rng(42)
|
11 |
+
num_pred = 1000
|
12 |
+
X_pred = pd.DataFrame(
|
13 |
+
{
|
14 |
+
"Chins": 50 * rng.random(num_pred),
|
15 |
+
"Situps": 80 * rng.random(num_pred),
|
16 |
+
"Jumps": 20 * rng.random(num_pred),
|
17 |
+
}
|
18 |
+
)
|
19 |
+
|
20 |
+
client = Client("AccelerationConsortium/sklearn-train-basic")
|
21 |
+
|
22 |
+
t0 = time()
|
23 |
+
result = client.predict(
|
24 |
+
{
|
25 |
+
"headers": X_pred.columns.tolist(),
|
26 |
+
"data": X_pred.values.tolist(),
|
27 |
+
}, # Dict(headers: List[str], data: List[List[Any]], metadata: Dict(str, List[Any] | None) | None) in 'X' Dataframe component
|
28 |
+
api_name="/predict",
|
29 |
+
)
|
30 |
+
|
31 |
+
print(f"Time taken: {time() - t0:.2f}s")
|
32 |
+
|
33 |
+
result_df = pd.DataFrame(result["data"], columns=result["headers"])
|
34 |
+
|
35 |
+
print(result_df)
|
app.py
CHANGED
@@ -10,8 +10,19 @@ X, y = load_linnerud(return_X_y=True, as_frame=True)
|
|
10 |
regr = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y)
|
11 |
# example usage: regr.predict(X.iloc[[0]])
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
iface = gr.Interface(
|
14 |
-
|
|
|
15 |
inputs=gr.Dataframe(
|
16 |
value=X.head(1),
|
17 |
headers=list(X.columns),
|
@@ -24,7 +35,6 @@ iface = gr.Interface(
|
|
24 |
headers=list(y.columns),
|
25 |
col_count=(y.shape[1], "fixed"),
|
26 |
datatype=y.dtypes.apply(str).replace("float64", "number").values.tolist(),
|
27 |
-
min_width=50,
|
28 |
),
|
29 |
)
|
30 |
iface.launch()
|
|
|
10 |
regr = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y)
|
11 |
# example usage: regr.predict(X.iloc[[0]])
|
12 |
|
13 |
+
|
14 |
+
def predict(X):
|
15 |
+
max_rows = 100000
|
16 |
+
if X.shape[0] > max_rows:
|
17 |
+
raise ValueError(
|
18 |
+
f"Too many rows ({X.shape[0]}), please use less than {max_rows} rows."
|
19 |
+
)
|
20 |
+
return regr.predict(X)
|
21 |
+
|
22 |
+
|
23 |
iface = gr.Interface(
|
24 |
+
title="MultiOutputRegressor Example",
|
25 |
+
fn=predict,
|
26 |
inputs=gr.Dataframe(
|
27 |
value=X.head(1),
|
28 |
headers=list(X.columns),
|
|
|
35 |
headers=list(y.columns),
|
36 |
col_count=(y.shape[1], "fixed"),
|
37 |
datatype=y.dtypes.apply(str).replace("float64", "number").values.tolist(),
|
|
|
38 |
),
|
39 |
)
|
40 |
iface.launch()
|