Spaces:
Running
Running
File size: 8,083 Bytes
f655011 453c7fc f655011 129904f 95b2105 f655011 f631e46 f655011 95b2105 f655011 9acb8e6 f655011 453c7fc 9acb8e6 453c7fc 129904f 453c7fc 129904f 9acb8e6 129904f f655011 129904f f655011 129904f f655011 129904f 453c7fc 129904f f655011 453c7fc 129904f 453c7fc 129904f f655011 129904f 9acb8e6 453c7fc 9acb8e6 f655011 453c7fc 129904f f655011 453c7fc f655011 453c7fc 129904f f655011 129904f f655011 129904f f655011 129904f f655011 9acb8e6 f655011 129904f f655011 129904f f655011 129904f f655011 129904f f655011 129904f 9acb8e6 129904f f655011 129904f f655011 129904f f631e46 129904f f631e46 129904f 453c7fc 129904f f655011 453c7fc f655011 9acb8e6 f655011 453c7fc f655011 129904f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from repeng import ControlVector, ControlModel
import gradio as gr
# Initialize model and tokenizer
from huggingface_hub import login
# Initialize model and tokenizer
mistral_path = "mistralai/Mistral-7B-Instruct-v0.3"
# mistral_path = "E:/language_models/models/mistral"
access_token = os.getenv("mistralaccesstoken")
login(access_token)
tokenizer = AutoTokenizer.from_pretrained(mistral_path)
tokenizer.pad_token_id = 0
model = AutoModelForCausalLM.from_pretrained(
mistral_path,
torch_dtype=torch.float16,
trust_remote_code=True,
use_safetensors=True
)
model = model.to("cuda:0" if torch.cuda.is_available() else "cpu")
model = ControlModel(model, list(range(-5, -18, -1)))
# Generation settings
default_generation_settings = {
"pad_token_id": tokenizer.eos_token_id, # Silence warning
"do_sample": False, # Deterministic output
"max_new_tokens": 256,
"repetition_penalty": 1.1, # Reduce repetition
}
# Tags for prompt formatting
user_tag, asst_tag = "[INST]", "[/INST]"
# List available control vectors
control_vector_files = [f for f in os.listdir('.') if f.endswith('.gguf')]
if not control_vector_files:
raise FileNotFoundError("No .gguf control vector files found in the current directory.")
# Function to toggle slider visibility based on checkbox state
def toggle_slider(checked):
return gr.update(visible=checked)
# Function to generate the model's response
def generate_response(system_prompt, user_message, history, max_new_tokens, repitition_penalty, *args):
checkboxes = []
sliders = []
#inputs_list = [system_prompt, user_input, chatbot, max_new_tokens, repetition_penalty] + control_checks + control_sliders
# Separate checkboxes and sliders based on type
# The first x in args are the checkbox names (the file names)
# The second x in args are the slider values
for i in range(len(control_vector_files)):
checkboxes.append(args[i])
sliders.append(args[len(control_vector_files) + i])
if len(checkboxes) != len(control_vector_files) or len(sliders) != len(control_vector_files):
return history if history else [], history if history else []
# Reset any previous control vectors
model.reset()
# Apply selected control vectors with their corresponding weights
for i in range(len(control_vector_files)):
if checkboxes[i]:
cv_file = control_vector_files[i]
weight = sliders[i]
try:
control_vector = ControlVector.import_gguf(cv_file)
model.set_control(control_vector, weight)
except Exception as e:
print(f"Failed to set control vector {cv_file}: {e}")
formatted_prompt = ""
# Mistral expects the history to be wrapped in <s>history</s>
if len(history) > 0:
formatted_prompt += "<s>"
# Append the system prompt if provided
if system_prompt.strip():
formatted_prompt += f"[INST] {system_prompt} [/INST] "
# Construct the formatted prompt based on history
if len(history) > 0:
for turn in history:
user_msg, asst_msg = turn
formatted_prompt += f"{user_tag} {user_msg} {asst_tag} {asst_msg}"
if len(history) > 0:
formatted_prompt += "</s>"
# Append the new user message
formatted_prompt += f"{user_tag} {user_message} {asst_tag}"
# Tokenize the input
input_ids = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
generation_settings = {
"pad_token_id": tokenizer.eos_token_id,
"do_sample": default_generation_settings["do_sample"],
"max_new_tokens": int(max_new_tokens),
"repetition_penalty": repetition_penalty.value,
}
# Generate the response
output_ids = model.generate(**input_ids, **generation_settings)
response = tokenizer.decode(output_ids.squeeze(), skip_special_tokens=False)
def get_assistant_response(input_string):
# Use regex to find the text between the final [/INST] tag and </s>
pattern = r'\[/INST\](?!.*\[/INST\])\s*(.*?)(?:</s>|$)'
match = re.search(pattern, input_string, re.DOTALL)
if match:
return match.group(1).strip()
return None
assistant_response = get_assistant_response(response)
# Update conversation history
history.append((user_message, assistant_response))
return history
# Function to reset the conversation history
def reset_chat():
# returns a blank user input text and a blank conversation history
return [], []
# Build the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# 🧠 Mistral v3 Language Model Interface")
with gr.Row():
# Left Column: Settings and Control Vectors
with gr.Column(scale=1):
gr.Markdown("### ⚙️ Settings")
# System Prompt Input
system_prompt = gr.Textbox(
label="System Prompt",
lines=2,
placeholder="Respond tot he user concisely"
)
gr.Markdown("### 📊 Control Vectors")
# Create checkboxes and sliders for each control vector
control_checks = []
control_sliders = []
for cv_file in control_vector_files:
with gr.Row():
# Checkbox to select the control vector
checkbox = gr.Checkbox(label=cv_file, value=False)
control_checks.append(checkbox)
# Slider to adjust the control vector's weight
slider = gr.Slider(
minimum=-2.5,
maximum=2.5,
value=0.0,
step=0.1,
label=f"{cv_file} Weight",
visible=False
)
control_sliders.append(slider)
# Link the checkbox to toggle slider visibility
checkbox.change(
toggle_slider,
inputs=checkbox,
outputs=slider
)
# Advanced Settings Section (collapsed by default)
with gr.Accordion("🔧 Advanced Settings", open=False):
with gr.Row():
max_new_tokens = gr.Number(
label="Max New Tokens",
value=default_generation_settings["max_new_tokens"],
precision=0,
step=10,
)
repetition_penalty = gr.Number(
label="Repetition Penalty",
value=default_generation_settings["repetition_penalty"],
precision=2,
step=0.1,
)
# Right Column: Chat Interface
with gr.Column(scale=2):
gr.Markdown("### 🗨️ Conversation")
# Chatbot to display conversation
chatbot = gr.Chatbot(label="Conversation")
# User Message Input
user_input = gr.Textbox(
label="Your Message",
lines=2,
placeholder="Type your message here..."
)
with gr.Row():
# Submit and New Chat buttons
submit_button = gr.Button("💬 Submit")
new_chat_button = gr.Button("🆕 New Chat")
inputs_list = [system_prompt, user_input, chatbot, max_new_tokens, repetition_penalty] + control_checks + control_sliders
# Define button actions
submit_button.click(
generate_response,
inputs=inputs_list,
outputs=[chatbot]
)
new_chat_button.click(
reset_chat,
inputs=[],
outputs=[chatbot, user_input]
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch() |