abrakjamson commited on
Commit
f631e46
1 Parent(s): 1eb09b2
Files changed (1) hide show
  1. app.py +19 -9
app.py CHANGED
@@ -6,13 +6,14 @@ import gradio as gr
6
  from huggingface_hub import login
7
 
8
  # Initialize model and tokenizer
9
- mistral_path = "mistralai/Mistral-7B-Instruct-v0.3" # Update this path as needed
 
10
 
11
  access_token = os.getenv("mistralaccesstoken")
12
  login(access_token)
13
 
 
14
  tokenizer = AutoTokenizer.from_pretrained(mistral_path)
15
- #tokenizer = AutoTokenizer.from_pretrained("E:/language_models/models/mistral")
16
  tokenizer.pad_token_id = 0
17
 
18
  model = AutoModelForCausalLM.from_pretrained(
@@ -48,6 +49,7 @@ def toggle_slider(checked):
48
  # Function to generate the model's response
49
  def generate_response(system_prompt, user_message, *args, history=None):
50
  # args contains alternating checkbox and slider values
 
51
  num_controls = len(control_vector_files)
52
  checkboxes = args[0::2] # Extract every first item in each pair
53
  sliders = args[1::2] # Extract every second item in each pair
@@ -55,14 +57,17 @@ def generate_response(system_prompt, user_message, *args, history=None):
55
  # Reset any previous control vectors
56
  model.reset()
57
 
 
58
  # Apply selected control vectors with their corresponding weights
59
  for i in range(num_controls):
60
  if checkboxes[i]:
 
61
  cv_file = control_vector_files[i]
62
  weight = sliders[i]
63
  try:
64
  control_vector = ControlVector.import_gguf(cv_file)
65
  model.set_control(control_vector, weight)
 
66
  except Exception as e:
67
  print(f"Failed to set control vector {cv_file}: {e}")
68
 
@@ -101,12 +106,7 @@ with gr.Blocks() as demo:
101
  placeholder="Enter system-level instructions here..."
102
  )
103
 
104
- # User Message Input
105
- user_input = gr.Textbox(
106
- label="User Message",
107
- lines=2,
108
- placeholder="Type your message here..."
109
- )
110
 
111
  gr.Markdown("### 📊 Control Vectors")
112
 
@@ -145,6 +145,13 @@ with gr.Blocks() as demo:
145
  with gr.Column(scale=2):
146
  # Chatbot to display conversation
147
  chatbot = gr.Chatbot(label="🗨️ Conversation")
 
 
 
 
 
 
 
148
 
149
  # State to keep track of conversation history
150
  state = gr.State([])
@@ -164,4 +171,7 @@ with gr.Blocks() as demo:
164
 
165
  # Launch the Gradio app
166
  if __name__ == "__main__":
167
- demo.launch()
 
 
 
 
6
  from huggingface_hub import login
7
 
8
  # Initialize model and tokenizer
9
+ mistral_path = "mistralai/Mistral-7B-Instruct-v0.3"
10
+ # mistral_path = "E:/language_models/models/mistral"
11
 
12
  access_token = os.getenv("mistralaccesstoken")
13
  login(access_token)
14
 
15
+ #tokenizer = AutoTokenizer.from_pretrained(mistral_path)
16
  tokenizer = AutoTokenizer.from_pretrained(mistral_path)
 
17
  tokenizer.pad_token_id = 0
18
 
19
  model = AutoModelForCausalLM.from_pretrained(
 
49
  # Function to generate the model's response
50
  def generate_response(system_prompt, user_message, *args, history=None):
51
  # args contains alternating checkbox and slider values
52
+ print("generating response for user query {user_message}")
53
  num_controls = len(control_vector_files)
54
  checkboxes = args[0::2] # Extract every first item in each pair
55
  sliders = args[1::2] # Extract every second item in each pair
 
57
  # Reset any previous control vectors
58
  model.reset()
59
 
60
+ print("applying weights")
61
  # Apply selected control vectors with their corresponding weights
62
  for i in range(num_controls):
63
  if checkboxes[i]:
64
+ print(f"checkbox: {i} True for {cv_file}, weight: {weight}")
65
  cv_file = control_vector_files[i]
66
  weight = sliders[i]
67
  try:
68
  control_vector = ControlVector.import_gguf(cv_file)
69
  model.set_control(control_vector, weight)
70
+ print("control vector set for {cv_file}")
71
  except Exception as e:
72
  print(f"Failed to set control vector {cv_file}: {e}")
73
 
 
106
  placeholder="Enter system-level instructions here..."
107
  )
108
 
109
+
 
 
 
 
 
110
 
111
  gr.Markdown("### 📊 Control Vectors")
112
 
 
145
  with gr.Column(scale=2):
146
  # Chatbot to display conversation
147
  chatbot = gr.Chatbot(label="🗨️ Conversation")
148
+
149
+ # User Message Input
150
+ user_input = gr.Textbox(
151
+ label="User Message",
152
+ lines=2,
153
+ placeholder="Type your message here..."
154
+ )
155
 
156
  # State to keep track of conversation history
157
  state = gr.State([])
 
171
 
172
  # Launch the Gradio app
173
  if __name__ == "__main__":
174
+ demo.launch()
175
+ # control_checks = []
176
+ # control_checks.append()
177
+ # generate_response("helpful assistant", "help me come up with a lie to my boss about why I'm late", ((True), (-1.0)), None)