Spaces:
Sleeping
Sleeping
File size: 2,964 Bytes
217f7d5 a121a30 217f7d5 a121a30 217f7d5 a121a30 217f7d5 a121a30 217f7d5 a121a30 217f7d5 a121a30 217f7d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
import torch
import numpy as np
from scipy.spatial.distance import cosine
import cv2
import os
RECOGNITION_THRESHOLD = 0.3
# Assuming the PyTorch model is a ResNet (or similar) and has been trained accordingly
# Load the embedding model
embedding_model = torch.load('full_mode2.pth')
embedding_model.eval() # Set the model to evaluation mode
# Database to store embeddings and user IDs
user_embeddings = {}
# Preprocess the image
def preprocess_image(image):
image = cv2.resize(image, (375, 375)) # Resize image
image = image / 255.0 # Normalize pixel values
image = np.transpose(image, (2, 0, 1)) # Change from HWC to CHW format
return torch.tensor(image, dtype=torch.float32).unsqueeze(0) # Add batch dimension
# Generate embedding
def generate_embedding(image):
preprocessed_image = preprocess_image(image)
with torch.no_grad(): # No need to track gradients
return embedding_model(preprocessed_image).numpy()[0]
# Register new user
def register_user(image, user_id):
try:
embedding = generate_embedding(image)
user_embeddings[user_id] = embedding
return f"User {user_id} registered successfully."
except Exception as e:
return f"Error during registration: {str(e)}"
# Recognize user
def recognize_user(image):
try:
new_embedding = generate_embedding(image)
min_distance = float('inf')
recognized_user_id = "Unknown"
for user_id, embedding in user_embeddings.items():
distance = cosine(new_embedding, embedding)
print(f"Distance for {user_id}: {distance}") # Debug: Print distances
if distance < min_distance:
min_distance = distance
recognized_user_id = user_id
print(f"Min distance: {min_distance}") # Debug: Print minimum distance
if min_distance > RECOGNITION_THRESHOLD:
return "User not recognized."
else:
return f"Recognized User: {recognized_user_id}"
except Exception as e:
return f"Error during recognition: {str(e)}"
def main():
with gr.Blocks() as demo:
gr.Markdown("Facial Recognition System")
with gr.Tab("Register"):
with gr.Row():
img_register = gr.Image()
user_id = gr.Textbox(label="User ID")
register_button = gr.Button("Register")
register_output = gr.Textbox()
register_button.click(register_user, inputs=[img_register, user_id], outputs=register_output)
with gr.Tab("Recognize"):
with gr.Row():
img_recognize = gr.Image()
recognize_button = gr.Button("Recognize")
recognize_output = gr.Textbox()
recognize_button.click(recognize_user, inputs=[img_recognize], outputs=recognize_output)
demo.launch(share=True)
if __name__ == "__main__":
main() |