Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from scipy.spatial.distance import cosine
|
5 |
+
import cv2
|
6 |
+
import os
|
7 |
+
|
8 |
+
RECOGNITION_THRESHOLD = 0.3
|
9 |
+
|
10 |
+
# Load the embedding model
|
11 |
+
embedding_model = tf.keras.models.load_model('full_mode2.pth')
|
12 |
+
|
13 |
+
# Database to store embeddings and user IDs
|
14 |
+
user_embeddings = {}
|
15 |
+
|
16 |
+
# Preprocess the image
|
17 |
+
def preprocess_image(image):
|
18 |
+
image = cv2.resize(image, (375, 375)) # Resize image
|
19 |
+
image = tf.keras.applications.resnet50.preprocess_input(image)
|
20 |
+
return np.expand_dims(image, axis=0)
|
21 |
+
|
22 |
+
# Generate embedding
|
23 |
+
def generate_embedding(image):
|
24 |
+
preprocessed_image = preprocess_image(image)
|
25 |
+
return embedding_model.predict(preprocessed_image)[0]
|
26 |
+
|
27 |
+
# Register new user
|
28 |
+
def register_user(image, user_id):
|
29 |
+
try:
|
30 |
+
embedding = generate_embedding(image)
|
31 |
+
user_embeddings[user_id] = embedding
|
32 |
+
return f"User {user_id} registered successfully."
|
33 |
+
except Exception as e:
|
34 |
+
return f"Error during registration: {str(e)}"
|
35 |
+
|
36 |
+
# Recognize user
|
37 |
+
def recognize_user(image):
|
38 |
+
try:
|
39 |
+
new_embedding = generate_embedding(image)
|
40 |
+
min_distance = float('inf')
|
41 |
+
recognized_user_id = "Unknown"
|
42 |
+
|
43 |
+
for user_id, embedding in user_embeddings.items():
|
44 |
+
distance = cosine(new_embedding, embedding)
|
45 |
+
print(f"Distance for {user_id}: {distance}") # Debug: Print distances
|
46 |
+
if distance < min_distance:
|
47 |
+
min_distance = distance
|
48 |
+
recognized_user_id = user_id
|
49 |
+
|
50 |
+
print(f"Min distance: {min_distance}") # Debug: Print minimum distance
|
51 |
+
if min_distance > RECOGNITION_THRESHOLD:
|
52 |
+
return "User not recognized."
|
53 |
+
else:
|
54 |
+
return f"Recognized User: {recognized_user_id}"
|
55 |
+
except Exception as e:
|
56 |
+
return f"Error during recognition: {str(e)}"
|
57 |
+
|
58 |
+
def main():
|
59 |
+
with gr.Blocks() as demo:
|
60 |
+
gr.Markdown("Facial Recognition System")
|
61 |
+
|
62 |
+
with gr.Tab("Register"):
|
63 |
+
with gr.Row():
|
64 |
+
img_register = gr.Image()
|
65 |
+
user_id = gr.Textbox(label="User ID")
|
66 |
+
register_button = gr.Button("Register")
|
67 |
+
register_output = gr.Textbox()
|
68 |
+
register_button.click(register_user, inputs=[img_register, user_id], outputs=register_output)
|
69 |
+
|
70 |
+
with gr.Tab("Recognize"):
|
71 |
+
with gr.Row():
|
72 |
+
img_recognize = gr.Image()
|
73 |
+
recognize_button = gr.Button("Recognize")
|
74 |
+
recognize_output = gr.Textbox()
|
75 |
+
recognize_button.click(recognize_user, inputs=[img_recognize], outputs=recognize_output)
|
76 |
+
|
77 |
+
demo.launch(share=True)
|
78 |
+
|
79 |
+
if __name__ == "__main__":
|
80 |
+
main()
|