File size: 3,450 Bytes
edf2a04
 
 
ebe55ae
5bef454
dc647b3
fac7ca0
 
 
 
 
 
 
 
7ad7881
fac7ca0
ce7d6d7
fb4f3f2
5becc54
fb4f3f2
783f40e
 
 
fac7ca0
783f40e
fac7ca0
783f40e
fac7ca0
fb4f3f2
 
783f40e
 
 
 
 
 
 
fb4f3f2
 
783f40e
 
 
b0e1b1f
783f40e
b0e1b1f
fb4f3f2
 
783f40e
 
 
 
 
 
 
 
 
 
 
fb4f3f2
 
783f40e
fb4f3f2
 
783f40e
fb4f3f2
783f40e
 
fac7ca0
 
f1e4e34
534795e
783f40e
b0e1b1f
fb4f3f2
fac7ca0
fb4f3f2
 
 
534795e
 
 
06816f0
fac7ca0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
import os
import requests

SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
TITLE = "Image Prompter"
EXAMPLE_INPUT = "A Reflective cat between stars."

html_temp = """
<div style="position: absolute; top: 0; right: 0;">
    <img src='https://huggingface.co/spaces/NerdN/open-gpt-Image-Prompter/blob/main/_45a03b4d-ea0f-4b81-873d-ff6b10461d52.jpg' alt='Your Image' style='width:100px;height:100px;'>
</div>
"""

zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"

HF_TOKEN = os.getenv("HF_TOKEN")
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}

def build_input_prompt(message, chatbot, system_prompt):
    """
    Constructs the input prompt string from the chatbot interactions and the current message.
    """
    input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n"
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n"

    input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>"
    return input_prompt


def post_request_beta(payload):
    """
    Sends a POST request to the predefined Zephyr-7b-Beta URL and returns the JSON response.
    """
    response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
    response.raise_for_status()  # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
    return response.json()


def predict_beta(message, chatbot=[], system_prompt=""):
    input_prompt = build_input_prompt(message, chatbot, system_prompt)
    data = {
        "inputs": input_prompt
    }

    try:
        response_data = post_request_beta(data)
        json_obj = response_data[0]
        
        if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
            bot_message = json_obj['generated_text']
            return bot_message
        elif 'error' in json_obj:
            raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt')
        else:
            warning_msg = f"Unexpected response: {json_obj}"
            raise gr.Error(warning_msg)
    except requests.HTTPError as e:
        error_msg = f"Request failed with status code {e.response.status_code}"
        raise gr.Error(error_msg)
    except json.JSONDecodeError as e:
        error_msg = f"Failed to decode response as JSON: {str(e)}"
        raise gr.Error(error_msg)

def test_preview_chatbot(message, history):
    response = predict_beta(message, history, SYSTEM_PROMPT)
    text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>")
    response = response[text_start:]
    return response


welcome_preview_message = f"""
Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nSay something like: 

"{EXAMPLE_INPUT}"
"""

chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)

demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview)
demo.launch(share=True)