TA commited on
Commit
783f40e
1 Parent(s): 831bb79

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -28
app.py CHANGED
@@ -1,49 +1,68 @@
1
  import gradio as gr
2
  import os
3
  import requests
4
- from gradio import Error
5
 
6
  SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
7
  TITLE = "Image Prompter"
8
  EXAMPLE_INPUT = "A Man Riding A Horse in Space"
 
9
 
10
  HF_TOKEN = os.getenv("HF_TOKEN")
11
  HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
12
 
13
  def build_input_prompt(message, chatbot, system_prompt):
14
- input_prompt = system_prompt + "\n\n" + message
 
 
 
 
 
 
 
15
  return input_prompt
16
 
17
- def post_request(model_url, payload):
18
- response = requests.post(model_url, headers=HEADERS, json=payload)
19
- response.raise_for_status()
 
 
 
 
20
  return response.json()
21
 
22
- def predict(model_url, message, system_prompt):
23
- input_prompt = build_input_prompt(message, [], system_prompt)
 
24
  data = {
25
- "prompt": input_prompt,
26
- "max_new_tokens": 256,
27
- "temperature": 0.7,
28
- "top_p": 0.95
29
  }
30
 
31
  try:
32
- response_data = post_request(model_url, data)
33
- bot_message = response_data["generated_text"]
34
- return bot_message
 
 
 
 
 
 
 
 
35
  except requests.HTTPError as e:
36
  error_msg = f"Request failed with status code {e.response.status_code}"
37
- raise Error(error_msg)
38
  except json.JSONDecodeError as e:
39
  error_msg = f"Failed to decode response as JSON: {str(e)}"
40
- raise Error(error_msg)
41
 
42
- def test_preview_chatbot(message):
43
- model_url = "https://huggingface.co/chat/models/llama/llama-3b"
44
- response = predict(model_url, message, SYSTEM_PROMPT)
 
45
  return response
46
 
 
47
  welcome_preview_message = f"""
48
  Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nSay something like:
49
  "{EXAMPLE_INPUT}"
@@ -52,12 +71,4 @@ Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}
52
  chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
53
  textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
54
 
55
- demo = gr.Interface(
56
- fn=test_preview_chatbot,
57
- inputs="text",
58
- outputs="text",
59
- title=TITLE,
60
- description="Image Prompter"
61
- )
62
-
63
- demo.launch()
 
1
  import gradio as gr
2
  import os
3
  import requests
 
4
 
5
  SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
6
  TITLE = "Image Prompter"
7
  EXAMPLE_INPUT = "A Man Riding A Horse in Space"
8
+ zephyr_7b_beta = "https://huggingface.co/chat/models/meta-llama/Meta-Llama-3-70B-Instruct"
9
 
10
  HF_TOKEN = os.getenv("HF_TOKEN")
11
  HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
12
 
13
  def build_input_prompt(message, chatbot, system_prompt):
14
+ """
15
+ Constructs the input prompt string from the chatbot interactions and the current message.
16
+ """
17
+ input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n"
18
+ for interaction in chatbot:
19
+ input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n"
20
+
21
+ input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>"
22
  return input_prompt
23
 
24
+
25
+ def post_request_beta(payload):
26
+ """
27
+ Sends a POST request to the predefined Zephyr-7b-Beta URL and returns the JSON response.
28
+ """
29
+ response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
30
+ response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
31
  return response.json()
32
 
33
+
34
+ def predict_beta(message, chatbot=[], system_prompt=""):
35
+ input_prompt = build_input_prompt(message, chatbot, system_prompt)
36
  data = {
37
+ "inputs": input_prompt
 
 
 
38
  }
39
 
40
  try:
41
+ response_data = post_request_beta(data)
42
+ json_obj = response_data[0]
43
+
44
+ if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
45
+ bot_message = json_obj['generated_text']
46
+ return bot_message
47
+ elif 'error' in json_obj:
48
+ raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt')
49
+ else:
50
+ warning_msg = f"Unexpected response: {json_obj}"
51
+ raise gr.Error(warning_msg)
52
  except requests.HTTPError as e:
53
  error_msg = f"Request failed with status code {e.response.status_code}"
54
+ raise gr.Error(error_msg)
55
  except json.JSONDecodeError as e:
56
  error_msg = f"Failed to decode response as JSON: {str(e)}"
57
+ raise gr.Error(error_msg)
58
 
59
+ def test_preview_chatbot(message, history):
60
+ response = predict_beta(message, history, SYSTEM_PROMPT)
61
+ text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>")
62
+ response = response[text_start:]
63
  return response
64
 
65
+
66
  welcome_preview_message = f"""
67
  Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nSay something like:
68
  "{EXAMPLE_INPUT}"
 
71
  chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
72
  textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
73
 
74
+ demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview)