|
import os |
|
import sys |
|
sys.path.append("./") |
|
|
|
import torch |
|
from torchvision import transforms |
|
from src.transformer import Transformer2DModel |
|
from src.pipeline import Pipeline |
|
from src.scheduler import Scheduler |
|
from transformers import ( |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
) |
|
from diffusers import VQModel |
|
import gradio as gr |
|
import spaces |
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
|
|
dtype = torch.bfloat16 |
|
model_path = "MeissonFlow/Meissonic" |
|
model = Transformer2DModel.from_pretrained(model_path, subfolder="transformer", torch_dtype=dtype) |
|
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae", torch_dtype=dtype) |
|
|
|
text_encoder = CLIPTextModelWithProjection.from_pretrained( |
|
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K",torch_dtype=dtype) |
|
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer", torch_dtype=dtype) |
|
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler") |
|
pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler) |
|
pipe.to(device) |
|
|
|
MAX_SEED = 2**32 - 1 |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
@spaces.GPU |
|
def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): |
|
if randomize_seed or seed == 0: |
|
seed = torch.randint(0, MAX_SEED, (1,)).item() |
|
torch.manual_seed(seed) |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
height=height, |
|
width=width, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
|
|
default_negative_prompt = "worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark" |
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
""" |
|
|
|
examples = [ |
|
"Modern Architecture render with pleasing aesthetics.", |
|
"An image of a Pikachu wearing a birthday hat and playing guitar.", |
|
"A statue of a lion stands in front of a building.", |
|
"A white and blue coffee mug with a picture of a man on it.", |
|
"A metal sculpture of a deer with antlers.", |
|
"A bronze statue of an owl with its wings spread.", |
|
"A white table with a vase of flowers and a cup of coffee on top of it.", |
|
"A woman stands on a dock in the fog.", |
|
"A lion's head is shown in a grayscale image.", |
|
"A sculpture of a Greek woman head with a headband and a head of hair." |
|
] |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("# Meissonic Text-to-Image Generator") |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0, variant="primary") |
|
result = gr.Image(label="Result", show_label=False) |
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
value=default_negative_prompt, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=20.0, |
|
step=0.1, |
|
value=9.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=64, |
|
) |
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=generate_image, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
demo.launch() |