Update app.py
Browse files
app.py
CHANGED
@@ -24,9 +24,7 @@ model = Transformer2DModel.from_pretrained(model_path, subfolder="transformer",
|
|
24 |
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae", torch_dtype=dtype)
|
25 |
# text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path,subfolder="text_encoder", torch_dtype=dtype)
|
26 |
text_encoder = CLIPTextModelWithProjection.from_pretrained( #using original text enc for stable sampling
|
27 |
-
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
28 |
-
torch_dtype=dtype
|
29 |
-
)
|
30 |
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer", torch_dtype=dtype)
|
31 |
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
|
32 |
pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler)
|
|
|
24 |
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae", torch_dtype=dtype)
|
25 |
# text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path,subfolder="text_encoder", torch_dtype=dtype)
|
26 |
text_encoder = CLIPTextModelWithProjection.from_pretrained( #using original text enc for stable sampling
|
27 |
+
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K",torch_dtype=dtype)
|
|
|
|
|
28 |
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer", torch_dtype=dtype)
|
29 |
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
|
30 |
pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler)
|