|
from fastapi import FastAPI, HTTPException, Request |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from pydantic import BaseModel |
|
from typing import List, Dict, Optional, Union |
|
from fastapi.responses import StreamingResponse |
|
import logging |
|
import uuid |
|
import time |
|
import json |
|
import asyncio |
|
import random |
|
import httpx |
|
from fake_useragent import UserAgent |
|
|
|
app = FastAPI() |
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
class ModelInfo(BaseModel): |
|
id: str |
|
object: str = "model" |
|
created: int = int(time.time()) |
|
owned_by: str = "custom" |
|
|
|
class ChatMessage(BaseModel): |
|
role: str |
|
content: str |
|
|
|
class ChatCompletionRequest(BaseModel): |
|
model: str |
|
messages: List[ChatMessage] |
|
temperature: Optional[float] = 1.0 |
|
top_p: Optional[float] = 1.0 |
|
n: Optional[int] = 1 |
|
stream: Optional[bool] = False |
|
stop: Optional[Union[str, List[str]]] = None |
|
max_tokens: Optional[int] = None |
|
presence_penalty: Optional[float] = 0.0 |
|
frequency_penalty: Optional[float] = 0.0 |
|
logit_bias: Optional[Dict[str, float]] = None |
|
user: Optional[str] = None |
|
|
|
class ChatCompletionResponseChoice(BaseModel): |
|
index: int |
|
message: ChatMessage |
|
finish_reason: Optional[str] = None |
|
|
|
class ChatCompletionResponseUsage(BaseModel): |
|
prompt_tokens: int |
|
completion_tokens: int |
|
total_tokens: int |
|
|
|
class ChatCompletionResponse(BaseModel): |
|
id: str |
|
object: str = "chat.completion" |
|
created: int |
|
model: str |
|
choices: List[ChatCompletionResponseChoice] |
|
usage: ChatCompletionResponseUsage |
|
|
|
class DeltaMessage(BaseModel): |
|
role: Optional[str] = None |
|
content: Optional[str] = None |
|
|
|
class ChatCompletionStreamResponseChoice(BaseModel): |
|
index: int |
|
delta: DeltaMessage |
|
finish_reason: Optional[str] = None |
|
|
|
class ChatCompletionStreamResponse(BaseModel): |
|
id: str |
|
object: str = "chat.completion.chunk" |
|
created: int |
|
model: str |
|
choices: List[ChatCompletionStreamResponseChoice] |
|
|
|
|
|
conversations: Dict[str, List[ChatMessage]] = {} |
|
|
|
ua = UserAgent() |
|
|
|
def get_next_user_agent(): |
|
return ua.random |
|
|
|
async def update_vqd_token(user_agent): |
|
async with httpx.AsyncClient() as client: |
|
try: |
|
await client.get("https://duckduckgo.com/country.json", headers={"User-Agent": user_agent}) |
|
headers = {"x-vqd-accept": "1", "User-Agent": user_agent} |
|
response = await client.get("https://duckduckgo.com/duckchat/v1/status", headers=headers) |
|
if response.status_code == 200: |
|
vqd_token = response.headers.get("x-vqd-4", "") |
|
logging.info(f"Fetched new x-vqd-4 token: {vqd_token}") |
|
return vqd_token |
|
else: |
|
logging.warning(f"Failed to fetch x-vqd-4 token. Status code: {response.status_code}") |
|
return "" |
|
except Exception as e: |
|
logging.error(f"Error fetching x-vqd-4 token: {str(e)}") |
|
return "" |
|
|
|
async def chat_with_duckduckgo(query: str, model: str, conversation_history: List[ChatMessage]): |
|
original_model = MODEL_MAPPING.get(model, model) |
|
user_agent = get_next_user_agent() |
|
vqd_token = await update_vqd_token(user_agent) |
|
if not vqd_token: |
|
raise HTTPException(status_code=500, detail="Failed to obtain VQD token") |
|
|
|
|
|
system_message = next((msg for msg in conversation_history if msg.role == "system"), None) |
|
user_messages = [{"role": msg.role, "content": msg.content} for msg in conversation_history if msg.role == "user"] |
|
|
|
if system_message and user_messages: |
|
user_messages[0]["content"] = f"{system_message.content}\n\n{user_messages[0]['content']}" |
|
|
|
payload = { |
|
"messages": user_messages, |
|
"model": original_model |
|
} |
|
|
|
headers = { |
|
"x-vqd-4": vqd_token, |
|
"Content-Type": "application/json", |
|
"User-Agent": user_agent |
|
} |
|
|
|
logging.info(f"Sending payload to DuckDuckGo with User-Agent: {user_agent}") |
|
|
|
async with httpx.AsyncClient() as client: |
|
try: |
|
response = await client.post("https://duckduckgo.com/duckchat/v1/chat", json=payload, headers=headers) |
|
if response.status_code == 200: |
|
full_response = "" |
|
async for line in response.aiter_lines(): |
|
if line.startswith("data: "): |
|
data = line[6:].strip() |
|
if data == "[DONE]": |
|
break |
|
try: |
|
json_data = json.loads(data) |
|
message = json_data.get("message", "") |
|
full_response += message |
|
yield message |
|
except json.JSONDecodeError: |
|
logging.warning(f"Failed to parse JSON: {data}") |
|
elif response.status_code == 429: |
|
logging.warning("Rate limit exceeded. Changing User-Agent and retrying.") |
|
for attempt in range(5): |
|
user_agent = get_next_user_agent() |
|
vqd_token = await update_vqd_token(user_agent) |
|
headers["User-Agent"] = user_agent |
|
headers["x-vqd-4"] = vqd_token |
|
logging.info(f"Retrying with new User-Agent: {user_agent}") |
|
response = await client.post("https://duckduckgo.com/duckchat/v1/chat", json=payload, headers=headers) |
|
if response.status_code == 200: |
|
async for line in response.aiter_lines(): |
|
if line.startswith("data: "): |
|
data = line[6:].strip() |
|
if data == "[DONE]": |
|
break |
|
try: |
|
json_data = json.loads(data) |
|
message = json_data.get("message", "") |
|
yield message |
|
except json.JSONDecodeError: |
|
logging.warning(f"Failed to parse JSON: {data}") |
|
break |
|
else: |
|
raise HTTPException(status_code=429, detail="Rate limit exceeded. Please try again later.") |
|
else: |
|
logging.error(f"Error response from DuckDuckGo. Status code: {response.status_code}") |
|
raise HTTPException(status_code=response.status_code, detail=f"Error communicating with DuckDuckGo: {response.text}") |
|
except httpx.HTTPStatusError as e: |
|
logging.error(f"HTTP error occurred: {str(e)}") |
|
raise HTTPException(status_code=e.response.status_code, detail=str(e)) |
|
except httpx.RequestError as e: |
|
logging.error(f"Request error occurred: {str(e)}") |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
except Exception as e: |
|
logging.error(f"Unexpected error in chat_with_duckduckgo: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}") |
|
|
|
from typing import Dict, List |
|
|
|
MODEL_MAPPING: Dict[str, Dict[str, str]] = { |
|
"keyless-gpt-4o-mini": { |
|
"backend_model": "gpt-4o-mini", |
|
"owned_by": "openai" |
|
}, |
|
"keyless-claude-3-haiku": { |
|
"backend_model": "claude-3-haiku-20240307", |
|
"owned_by": "anthropic" |
|
}, |
|
"keyless-mixtral-8x7b": { |
|
"backend_model": "mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"owned_by": "mistralai" |
|
}, |
|
"keyless-meta-Llama-3.1-70B-Instruct-Turbo": { |
|
"backend_model": "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo", |
|
"owned_by": "meta" |
|
} |
|
} |
|
|
|
@app.get("/v1/models") |
|
async def list_models() -> Dict[str, List[Dict[str, any]]]: |
|
""" |
|
List available models with their metadata. |
|
|
|
Returns: |
|
Dict containing a list of model information objects. |
|
""" |
|
current_timestamp = int(datetime.now().timestamp()) |
|
|
|
models = [ |
|
{ |
|
"id": model_id, |
|
"object": "model", |
|
"created": current_timestamp, |
|
"owned_by": model_info["owned_by"], |
|
"backend_model": model_info["backend_model"] |
|
} |
|
for model_id, model_info in MODEL_MAPPING.items() |
|
] |
|
|
|
return {"data": models} |
|
|
|
@app.post("/v1/chat/completions") |
|
async def chat_completion(request: ChatCompletionRequest): |
|
conversation_id = str(uuid.uuid4()) |
|
|
|
logging.info(f"Received chat completion request for conversation {conversation_id}") |
|
logging.info(f"Request: {request.model_dump()}") |
|
|
|
conversation_history = conversations.get(conversation_id, []) |
|
conversation_history.extend(request.messages) |
|
|
|
async def generate(): |
|
try: |
|
full_response = "" |
|
async for chunk in chat_with_duckduckgo(" ".join([msg.content for msg in request.messages]), request.model, conversation_history): |
|
full_response += chunk |
|
|
|
response = ChatCompletionStreamResponse( |
|
id=conversation_id, |
|
created=int(time.time()), |
|
model=request.model, |
|
choices=[ |
|
ChatCompletionStreamResponseChoice( |
|
index=0, |
|
delta=DeltaMessage(content=chunk), |
|
finish_reason=None |
|
) |
|
] |
|
) |
|
yield f"data: {response.model_dump_json()}\n\n" |
|
await asyncio.sleep(random.uniform(0.05, 0.1)) |
|
|
|
final_response = ChatCompletionStreamResponse( |
|
id=conversation_id, |
|
created=int(time.time()), |
|
model=request.model, |
|
choices=[ |
|
ChatCompletionStreamResponseChoice( |
|
index=0, |
|
delta=DeltaMessage(), |
|
finish_reason="stop" |
|
) |
|
] |
|
) |
|
yield f"data: {final_response.model_dump_json()}\n\n" |
|
yield "data: [DONE]\n\n" |
|
except Exception as e: |
|
logging.error(f"Error during streaming: {str(e)}") |
|
yield f"data: {json.dumps({'error': str(e)})}\n\n" |
|
|
|
if request.stream: |
|
return StreamingResponse(generate(), media_type="text/event-stream") |
|
else: |
|
full_response = "" |
|
async for chunk in chat_with_duckduckgo(" ".join([msg.content for msg in request.messages]), request.model, conversation_history): |
|
full_response += chunk |
|
|
|
response = ChatCompletionResponse( |
|
id=conversation_id, |
|
created=int(time.time()), |
|
model=request.model, |
|
choices=[ |
|
ChatCompletionResponseChoice( |
|
index=0, |
|
message=ChatMessage(role="assistant", content=full_response), |
|
finish_reason="stop" |
|
) |
|
], |
|
usage=ChatCompletionResponseUsage( |
|
prompt_tokens=sum(len(msg.content.split()) for msg in conversation_history), |
|
completion_tokens=len(full_response.split()), |
|
total_tokens=sum(len(msg.content.split()) for msg in conversation_history) + len(full_response.split()) |
|
) |
|
) |
|
|
|
conversation_history.append(ChatMessage(role="assistant", content=full_response)) |
|
conversations[conversation_id] = conversation_history |
|
|
|
return response |
|
|
|
@app.delete("/v1/conversations/{conversation_id}") |
|
async def end_conversation(conversation_id: str): |
|
if conversation_id in conversations: |
|
del conversations[conversation_id] |
|
logging.info(f"Conversation {conversation_id} ended and context cleared") |
|
return {"message": f"Conversation {conversation_id} ended and context cleared."} |
|
else: |
|
logging.warning(f"Attempt to end non-existent conversation {conversation_id}") |
|
raise HTTPException(status_code=404, detail="Conversation not found") |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=1337) |