File size: 12,614 Bytes
6c63fd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51f4d6a
6c63fd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51f4d6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c63fd2
51f4d6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c63fd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Dict, Optional, Union
from fastapi.responses import StreamingResponse
import logging
import uuid
import time
import json
import asyncio
import random
import httpx
from fake_useragent import UserAgent

app = FastAPI()

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


class ModelInfo(BaseModel):
    id: str
    object: str = "model"
    created: int = int(time.time())
    owned_by: str = "custom"

class ChatMessage(BaseModel):
    role: str
    content: str

class ChatCompletionRequest(BaseModel):
    model: str
    messages: List[ChatMessage]
    temperature: Optional[float] = 1.0
    top_p: Optional[float] = 1.0
    n: Optional[int] = 1
    stream: Optional[bool] = False
    stop: Optional[Union[str, List[str]]] = None
    max_tokens: Optional[int] = None
    presence_penalty: Optional[float] = 0.0
    frequency_penalty: Optional[float] = 0.0
    logit_bias: Optional[Dict[str, float]] = None
    user: Optional[str] = None

class ChatCompletionResponseChoice(BaseModel):
    index: int
    message: ChatMessage
    finish_reason: Optional[str] = None

class ChatCompletionResponseUsage(BaseModel):
    prompt_tokens: int
    completion_tokens: int
    total_tokens: int

class ChatCompletionResponse(BaseModel):
    id: str
    object: str = "chat.completion"
    created: int
    model: str
    choices: List[ChatCompletionResponseChoice]
    usage: ChatCompletionResponseUsage

class DeltaMessage(BaseModel):
    role: Optional[str] = None
    content: Optional[str] = None

class ChatCompletionStreamResponseChoice(BaseModel):
    index: int
    delta: DeltaMessage
    finish_reason: Optional[str] = None

class ChatCompletionStreamResponse(BaseModel):
    id: str
    object: str = "chat.completion.chunk"
    created: int
    model: str
    choices: List[ChatCompletionStreamResponseChoice]

# Store active conversations
conversations: Dict[str, List[ChatMessage]] = {}

ua = UserAgent()

def get_next_user_agent():
    return ua.random

async def update_vqd_token(user_agent):
    async with httpx.AsyncClient() as client:
        try:
            await client.get("https://duckduckgo.com/country.json", headers={"User-Agent": user_agent})
            headers = {"x-vqd-accept": "1", "User-Agent": user_agent}
            response = await client.get("https://duckduckgo.com/duckchat/v1/status", headers=headers)
            if response.status_code == 200:
                vqd_token = response.headers.get("x-vqd-4", "")
                logging.info(f"Fetched new x-vqd-4 token: {vqd_token}")
                return vqd_token
            else:
                logging.warning(f"Failed to fetch x-vqd-4 token. Status code: {response.status_code}")
                return ""
        except Exception as e:
            logging.error(f"Error fetching x-vqd-4 token: {str(e)}")
            return ""

async def chat_with_duckduckgo(query: str, model: str, conversation_history: List[ChatMessage]):
    original_model = MODEL_MAPPING.get(model, model)
    user_agent = get_next_user_agent()
    vqd_token = await update_vqd_token(user_agent)
    if not vqd_token:
        raise HTTPException(status_code=500, detail="Failed to obtain VQD token")

    # If there is a system message, add it before the first user message (DDG AI doesnt let us send system messages, so this is a workaround -- fundamentally, it works the same way when setting a system prompt)
    system_message = next((msg for msg in conversation_history if msg.role == "system"), None)
    user_messages = [{"role": msg.role, "content": msg.content} for msg in conversation_history if msg.role == "user"]
    
    if system_message and user_messages:
        user_messages[0]["content"] = f"{system_message.content}\n\n{user_messages[0]['content']}"

    payload = {
        "messages": user_messages,
        "model": original_model
    }

    headers = {
        "x-vqd-4": vqd_token,
        "Content-Type": "application/json",
        "User-Agent": user_agent
    }

    logging.info(f"Sending payload to DuckDuckGo with User-Agent: {user_agent}")

    async with httpx.AsyncClient() as client:
        try:
            response = await client.post("https://duckduckgo.com/duckchat/v1/chat", json=payload, headers=headers)
            if response.status_code == 200:
                full_response = ""
                async for line in response.aiter_lines():
                    if line.startswith("data: "):
                        data = line[6:].strip()
                        if data == "[DONE]":
                            break
                        try:
                            json_data = json.loads(data)
                            message = json_data.get("message", "")
                            full_response += message
                            yield message
                        except json.JSONDecodeError:
                            logging.warning(f"Failed to parse JSON: {data}")
            elif response.status_code == 429:
                logging.warning("Rate limit exceeded. Changing User-Agent and retrying.")
                for attempt in range(5):  # Try up to 5 times
                    user_agent = get_next_user_agent()
                    vqd_token = await update_vqd_token(user_agent)
                    headers["User-Agent"] = user_agent
                    headers["x-vqd-4"] = vqd_token
                    logging.info(f"Retrying with new User-Agent: {user_agent}")
                    response = await client.post("https://duckduckgo.com/duckchat/v1/chat", json=payload, headers=headers)
                    if response.status_code == 200:
                        async for line in response.aiter_lines():
                            if line.startswith("data: "):
                                data = line[6:].strip()
                                if data == "[DONE]":
                                    break
                                try:
                                    json_data = json.loads(data)
                                    message = json_data.get("message", "")
                                    yield message
                                except json.JSONDecodeError:
                                    logging.warning(f"Failed to parse JSON: {data}")
                        break
                else:
                    raise HTTPException(status_code=429, detail="Rate limit exceeded. Please try again later.")
            else:
                logging.error(f"Error response from DuckDuckGo. Status code: {response.status_code}")
                raise HTTPException(status_code=response.status_code, detail=f"Error communicating with DuckDuckGo: {response.text}")
        except httpx.HTTPStatusError as e:
            logging.error(f"HTTP error occurred: {str(e)}")
            raise HTTPException(status_code=e.response.status_code, detail=str(e))
        except httpx.RequestError as e:
            logging.error(f"Request error occurred: {str(e)}")
            raise HTTPException(status_code=500, detail=str(e))
        except Exception as e:
            logging.error(f"Unexpected error in chat_with_duckduckgo: {str(e)}")
            raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")

from typing import Dict, List

MODEL_MAPPING: Dict[str, Dict[str, str]] = {
    "keyless-gpt-4o-mini": {
        "backend_model": "gpt-4o-mini",
        "owned_by": "openai"
    },
    "keyless-claude-3-haiku": {
        "backend_model": "claude-3-haiku-20240307",
        "owned_by": "anthropic"
    },
    "keyless-mixtral-8x7b": {
        "backend_model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
        "owned_by": "mistralai"
    },
    "keyless-meta-Llama-3.1-70B-Instruct-Turbo": {
        "backend_model": "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
        "owned_by": "meta"
    }
}

@app.get("/v1/models")
async def list_models() -> Dict[str, List[Dict[str, any]]]:
    """
    List available models with their metadata.
    
    Returns:
        Dict containing a list of model information objects.
    """
    current_timestamp = int(datetime.now().timestamp())
    
    models = [
        {
            "id": model_id,
            "object": "model",
            "created": current_timestamp,
            "owned_by": model_info["owned_by"],
            "backend_model": model_info["backend_model"]
        }
        for model_id, model_info in MODEL_MAPPING.items()
    ]
    
    return {"data": models}

@app.post("/v1/chat/completions")
async def chat_completion(request: ChatCompletionRequest):
    conversation_id = str(uuid.uuid4())

    logging.info(f"Received chat completion request for conversation {conversation_id}")
    logging.info(f"Request: {request.model_dump()}")

    conversation_history = conversations.get(conversation_id, [])
    conversation_history.extend(request.messages)

    async def generate():
        try:
            full_response = ""
            async for chunk in chat_with_duckduckgo(" ".join([msg.content for msg in request.messages]), request.model, conversation_history):
                full_response += chunk
                
                response = ChatCompletionStreamResponse(
                    id=conversation_id,
                    created=int(time.time()),
                    model=request.model,
                    choices=[
                        ChatCompletionStreamResponseChoice(
                            index=0,
                            delta=DeltaMessage(content=chunk),
                            finish_reason=None
                        )
                    ]
                )
                yield f"data: {response.model_dump_json()}\n\n"
                await asyncio.sleep(random.uniform(0.05, 0.1))

            final_response = ChatCompletionStreamResponse(
                id=conversation_id,
                created=int(time.time()),
                model=request.model,
                choices=[
                    ChatCompletionStreamResponseChoice(
                        index=0,
                        delta=DeltaMessage(),
                        finish_reason="stop"
                    )
                ]
            )
            yield f"data: {final_response.model_dump_json()}\n\n"
            yield "data: [DONE]\n\n"
        except Exception as e:
            logging.error(f"Error during streaming: {str(e)}")
            yield f"data: {json.dumps({'error': str(e)})}\n\n"

    if request.stream:
        return StreamingResponse(generate(), media_type="text/event-stream")
    else:
        full_response = ""
        async for chunk in chat_with_duckduckgo(" ".join([msg.content for msg in request.messages]), request.model, conversation_history):
            full_response += chunk

        response = ChatCompletionResponse(
            id=conversation_id,
            created=int(time.time()),
            model=request.model,
            choices=[
                ChatCompletionResponseChoice(
                    index=0,
                    message=ChatMessage(role="assistant", content=full_response),
                    finish_reason="stop"
                )
            ],
            usage=ChatCompletionResponseUsage(
                prompt_tokens=sum(len(msg.content.split()) for msg in conversation_history),
                completion_tokens=len(full_response.split()),
                total_tokens=sum(len(msg.content.split()) for msg in conversation_history) + len(full_response.split())
            )
        )

        conversation_history.append(ChatMessage(role="assistant", content=full_response))
        conversations[conversation_id] = conversation_history
        
        return response

@app.delete("/v1/conversations/{conversation_id}")
async def end_conversation(conversation_id: str):
    if conversation_id in conversations:
        del conversations[conversation_id]
        logging.info(f"Conversation {conversation_id} ended and context cleared")
        return {"message": f"Conversation {conversation_id} ended and context cleared."}
    else:
        logging.warning(f"Attempt to end non-existent conversation {conversation_id}")
        raise HTTPException(status_code=404, detail="Conversation not found")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=1337)