SkyReels_L / skyreelsinfer /pipelines /pipeline_skyreels_video.py
1inkusFace's picture
Update skyreelsinfer/pipelines/pipeline_skyreels_video.py
5ac9249 verified
from typing import Any
from typing import Callable
from typing import Dict
from typing import List
from typing import Optional
from typing import Union
import numpy as np
import torch
from diffusers import HunyuanVideoPipeline
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import HunyuanVideoPipelineOutput
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import MultiPipelineCallbacks
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import PipelineCallback
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps
from PIL import Image
#import gc
def resizecrop(image, th, tw):
w, h = image.size
if h / w > th / tw:
new_w = int(w)
new_h = int(new_w * th / tw)
else:
new_h = int(h)
new_w = int(new_h * tw / th)
left = (w - new_w) / 2
top = (h - new_h) / 2
right = (w + new_w) / 2
bottom = (h + new_h) / 2
image = image.crop((left, top, right, bottom))
return image
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class SkyreelsVideoPipeline(HunyuanVideoPipeline):
"""
support i2v and t2v
support true_cfg
"""
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def clip_skip(self):
return self._clip_skip
@property
def do_classifier_free_guidance(self):
# return self._guidance_scale > 1 and self.transformer.config.time_cond_proj_dim is None
return self._guidance_scale > 1
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool,
negative_prompt: str = "",
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
num_videos_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
negative_attention_mask: Optional[torch.Tensor] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
max_sequence_length: int = 256,
):
num_hidden_layers_to_skip = 2 #self.clip_skip if self.clip_skip is not None else 0
print(f"num_hidden_layers_to_skip: {num_hidden_layers_to_skip}")
if prompt_embeds is None:
prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds(
prompt,
prompt_template,
num_videos_per_prompt,
device=device,
dtype=dtype,
num_hidden_layers_to_skip=num_hidden_layers_to_skip,
max_sequence_length=max_sequence_length,
)
if negative_prompt_embeds is None and do_classifier_free_guidance:
negative_prompt_embeds, negative_attention_mask = self._get_llama_prompt_embeds(
negative_prompt,
prompt_template,
num_videos_per_prompt,
device=device,
dtype=dtype,
num_hidden_layers_to_skip=num_hidden_layers_to_skip,
max_sequence_length=max_sequence_length,
)
if self.text_encoder_2 is not None and pooled_prompt_embeds is None:
pooled_prompt_embeds = self._get_clip_prompt_embeds(
prompt,
num_videos_per_prompt,
device=device,
dtype=dtype,
max_sequence_length=77,
)
if negative_pooled_prompt_embeds is None and do_classifier_free_guidance:
negative_pooled_prompt_embeds = self._get_clip_prompt_embeds(
negative_prompt,
num_videos_per_prompt,
device=device,
dtype=dtype,
max_sequence_length=77,
)
return (
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_attention_mask,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
)
def image_latents(
self,
initial_image,
batch_size,
height,
width,
device,
dtype,
num_channels_latents,
video_length,
):
initial_image = initial_image.unsqueeze(2)
image_latents = self.vae.encode(initial_image).latent_dist.sample()
if hasattr(self.vae.config, "shift_factor") and self.vae.config.shift_factor:
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
else:
image_latents = image_latents * self.vae.config.scaling_factor
padding_shape = (
batch_size,
num_channels_latents,
video_length - 1,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype)
image_latents = torch.cat([image_latents, latent_padding], dim=2)
return image_latents
@torch.no_grad()
def __call__(
self,
prompt: str,
negative_prompt: str = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
height: int = 512,
width: int = 512,
num_frames: int = 129,
num_inference_steps: int = 50,
sigmas: List[float] = None,
guidance_scale: float = 1.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_attention_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
clip_skip: Optional[int] = 2,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
max_sequence_length: int = 256,
embedded_guidance_scale: Optional[float] = 6.0,
image: Optional[Union[torch.Tensor, Image.Image]] = None,
cfg_for: bool = False,
):
if hasattr(self, "text_encoder_to_gpu"):
self.text_encoder_to_gpu()
if image is not None and isinstance(image, Image.Image):
image = resizecrop(image, height, width)
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
None,
height,
width,
prompt_embeds,
callback_on_step_end_tensor_inputs,
prompt_template,
)
# add negative prompt check
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._attention_kwargs = attention_kwargs
self._interrupt = False
device = self._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if self.text_encoder.device.type == 'cpu':
self.text_encoder.to("cuda")
# 3. Encode input prompt
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_attention_mask,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_template=prompt_template,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_embeds=negative_prompt_embeds,
negative_attention_mask=negative_attention_mask,
device=device,
max_sequence_length=max_sequence_length,
)
transformer_dtype = self.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
if pooled_prompt_embeds is not None:
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
## Embeddings are concatenated to form a batch.
if self.do_classifier_free_guidance:
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
negative_attention_mask = negative_attention_mask.to(transformer_dtype)
if negative_pooled_prompt_embeds is not None:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
if prompt_attention_mask is not None:
prompt_attention_mask = torch.cat([negative_attention_mask, prompt_attention_mask])
if pooled_prompt_embeds is not None:
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
# 4. Prepare timesteps
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
)
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
if image is not None:
num_channels_latents = int(num_channels_latents / 2)
image = self.video_processor.preprocess(image, height=height, width=width).to(
device, dtype=prompt_embeds.dtype
)
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_latent_frames,
torch.float32,
device,
generator,
latents,
)
self.text_encoder.to("cpu")
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
# add image latents
if image is not None:
image_latents = self.image_latents(
image, batch_size, height, width, device, torch.float32, num_channels_latents, num_latent_frames
)
image_latents = image_latents.to(transformer_dtype)
else:
image_latents = None
# 6. Prepare guidance condition
if self.do_classifier_free_guidance:
guidance = (
torch.tensor([embedded_guidance_scale] * latents.shape[0] * 2, dtype=transformer_dtype, device=device)
* 1000.0
)
else:
guidance = (
torch.tensor([embedded_guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device)
* 1000.0
)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
if hasattr(self, "text_encoder_to_cpu"):
self.text_encoder_to_cpu()
self.vae.to("cpu")
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
latents = latents.to(transformer_dtype)
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
# timestep = t.expand(latents.shape[0]).to(latents.dtype)
if image_latents is not None:
latent_image_input = (
torch.cat([image_latents] * 2) if self.do_classifier_free_guidance else image_latents
)
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=1)
timestep = t.repeat(latent_model_input.shape[0]).to(torch.float32)
if cfg_for and self.do_classifier_free_guidance:
noise_pred_list = []
for idx in range(latent_model_input.shape[0]):
noise_pred_uncond = self.transformer(
hidden_states=latent_model_input[idx].unsqueeze(0),
timestep=timestep[idx].unsqueeze(0),
encoder_hidden_states=prompt_embeds[idx].unsqueeze(0),
encoder_attention_mask=prompt_attention_mask[idx].unsqueeze(0),
pooled_projections=pooled_prompt_embeds[idx].unsqueeze(0),
guidance=guidance[idx].unsqueeze(0),
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred_list.append(noise_pred_uncond)
noise_pred = torch.cat(noise_pred_list, dim=0)
else:
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
guidance=guidance,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(
noise_pred,
noise_pred_text,
guidance_rescale=self.guidance_rescale,
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if not output_type == "latent":
if self.vae.device.type == 'cpu':
self.vae.to("cuda")
latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
video = self.vae.decode(latents, return_dict=False)[0]
video = self.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return HunyuanVideoPipelineOutput(frames=video)