Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,725 Bytes
526cdb6 ed78ea9 526cdb6 8db17ee 526cdb6 ed78ea9 526cdb6 9086dad 526cdb6 5ac9249 526cdb6 2bbaaed 526cdb6 9086dad 526cdb6 9eeb954 526cdb6 ed78ea9 526cdb6 98e05fc ed78ea9 526cdb6 ed78ea9 526cdb6 2bbaaed 71697cb 9eeb954 526cdb6 ed78ea9 526cdb6 9eeb954 526cdb6 ed78ea9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
from typing import Any
from typing import Callable
from typing import Dict
from typing import List
from typing import Optional
from typing import Union
import numpy as np
import torch
from diffusers import HunyuanVideoPipeline
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import HunyuanVideoPipelineOutput
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import MultiPipelineCallbacks
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import PipelineCallback
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps
from PIL import Image
#import gc
def resizecrop(image, th, tw):
w, h = image.size
if h / w > th / tw:
new_w = int(w)
new_h = int(new_w * th / tw)
else:
new_h = int(h)
new_w = int(new_h * tw / th)
left = (w - new_w) / 2
top = (h - new_h) / 2
right = (w + new_w) / 2
bottom = (h + new_h) / 2
image = image.crop((left, top, right, bottom))
return image
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class SkyreelsVideoPipeline(HunyuanVideoPipeline):
"""
support i2v and t2v
support true_cfg
"""
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def clip_skip(self):
return self._clip_skip
@property
def do_classifier_free_guidance(self):
# return self._guidance_scale > 1 and self.transformer.config.time_cond_proj_dim is None
return self._guidance_scale > 1
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool,
negative_prompt: str = "",
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
num_videos_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
negative_attention_mask: Optional[torch.Tensor] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
max_sequence_length: int = 256,
):
num_hidden_layers_to_skip = 2 #self.clip_skip if self.clip_skip is not None else 0
print(f"num_hidden_layers_to_skip: {num_hidden_layers_to_skip}")
if prompt_embeds is None:
prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds(
prompt,
prompt_template,
num_videos_per_prompt,
device=device,
dtype=dtype,
num_hidden_layers_to_skip=num_hidden_layers_to_skip,
max_sequence_length=max_sequence_length,
)
if negative_prompt_embeds is None and do_classifier_free_guidance:
negative_prompt_embeds, negative_attention_mask = self._get_llama_prompt_embeds(
negative_prompt,
prompt_template,
num_videos_per_prompt,
device=device,
dtype=dtype,
num_hidden_layers_to_skip=num_hidden_layers_to_skip,
max_sequence_length=max_sequence_length,
)
if self.text_encoder_2 is not None and pooled_prompt_embeds is None:
pooled_prompt_embeds = self._get_clip_prompt_embeds(
prompt,
num_videos_per_prompt,
device=device,
dtype=dtype,
max_sequence_length=77,
)
if negative_pooled_prompt_embeds is None and do_classifier_free_guidance:
negative_pooled_prompt_embeds = self._get_clip_prompt_embeds(
negative_prompt,
num_videos_per_prompt,
device=device,
dtype=dtype,
max_sequence_length=77,
)
return (
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_attention_mask,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
)
def image_latents(
self,
initial_image,
batch_size,
height,
width,
device,
dtype,
num_channels_latents,
video_length,
):
initial_image = initial_image.unsqueeze(2)
image_latents = self.vae.encode(initial_image).latent_dist.sample()
if hasattr(self.vae.config, "shift_factor") and self.vae.config.shift_factor:
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
else:
image_latents = image_latents * self.vae.config.scaling_factor
padding_shape = (
batch_size,
num_channels_latents,
video_length - 1,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype)
image_latents = torch.cat([image_latents, latent_padding], dim=2)
return image_latents
@torch.no_grad()
def __call__(
self,
prompt: str,
negative_prompt: str = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
height: int = 512,
width: int = 512,
num_frames: int = 129,
num_inference_steps: int = 50,
sigmas: List[float] = None,
guidance_scale: float = 1.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_attention_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
clip_skip: Optional[int] = 2,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
max_sequence_length: int = 256,
embedded_guidance_scale: Optional[float] = 6.0,
image: Optional[Union[torch.Tensor, Image.Image]] = None,
cfg_for: bool = False,
):
if hasattr(self, "text_encoder_to_gpu"):
self.text_encoder_to_gpu()
if image is not None and isinstance(image, Image.Image):
image = resizecrop(image, height, width)
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
None,
height,
width,
prompt_embeds,
callback_on_step_end_tensor_inputs,
prompt_template,
)
# add negative prompt check
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._attention_kwargs = attention_kwargs
self._interrupt = False
device = self._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if self.text_encoder.device.type == 'cpu':
self.text_encoder.to("cuda")
# 3. Encode input prompt
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_attention_mask,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_template=prompt_template,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_embeds=negative_prompt_embeds,
negative_attention_mask=negative_attention_mask,
device=device,
max_sequence_length=max_sequence_length,
)
transformer_dtype = self.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
if pooled_prompt_embeds is not None:
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
## Embeddings are concatenated to form a batch.
if self.do_classifier_free_guidance:
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
negative_attention_mask = negative_attention_mask.to(transformer_dtype)
if negative_pooled_prompt_embeds is not None:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
if prompt_attention_mask is not None:
prompt_attention_mask = torch.cat([negative_attention_mask, prompt_attention_mask])
if pooled_prompt_embeds is not None:
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
# 4. Prepare timesteps
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
)
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
if image is not None:
num_channels_latents = int(num_channels_latents / 2)
image = self.video_processor.preprocess(image, height=height, width=width).to(
device, dtype=prompt_embeds.dtype
)
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_latent_frames,
torch.float32,
device,
generator,
latents,
)
self.text_encoder.to("cpu")
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
# add image latents
if image is not None:
image_latents = self.image_latents(
image, batch_size, height, width, device, torch.float32, num_channels_latents, num_latent_frames
)
image_latents = image_latents.to(transformer_dtype)
else:
image_latents = None
# 6. Prepare guidance condition
if self.do_classifier_free_guidance:
guidance = (
torch.tensor([embedded_guidance_scale] * latents.shape[0] * 2, dtype=transformer_dtype, device=device)
* 1000.0
)
else:
guidance = (
torch.tensor([embedded_guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device)
* 1000.0
)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
if hasattr(self, "text_encoder_to_cpu"):
self.text_encoder_to_cpu()
self.vae.to("cpu")
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
latents = latents.to(transformer_dtype)
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
# timestep = t.expand(latents.shape[0]).to(latents.dtype)
if image_latents is not None:
latent_image_input = (
torch.cat([image_latents] * 2) if self.do_classifier_free_guidance else image_latents
)
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=1)
timestep = t.repeat(latent_model_input.shape[0]).to(torch.float32)
if cfg_for and self.do_classifier_free_guidance:
noise_pred_list = []
for idx in range(latent_model_input.shape[0]):
noise_pred_uncond = self.transformer(
hidden_states=latent_model_input[idx].unsqueeze(0),
timestep=timestep[idx].unsqueeze(0),
encoder_hidden_states=prompt_embeds[idx].unsqueeze(0),
encoder_attention_mask=prompt_attention_mask[idx].unsqueeze(0),
pooled_projections=pooled_prompt_embeds[idx].unsqueeze(0),
guidance=guidance[idx].unsqueeze(0),
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred_list.append(noise_pred_uncond)
noise_pred = torch.cat(noise_pred_list, dim=0)
else:
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
guidance=guidance,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(
noise_pred,
noise_pred_text,
guidance_rescale=self.guidance_rescale,
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if not output_type == "latent":
if self.vae.device.type == 'cpu':
self.vae.to("cuda")
latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
video = self.vae.decode(latents, return_dict=False)[0]
video = self.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return HunyuanVideoPipelineOutput(frames=video) |