1inkusFace commited on
Commit
2bbaaed
·
verified ·
1 Parent(s): 71697cb

Update skyreelsinfer/pipelines/pipeline_skyreels_video.py

Browse files
skyreelsinfer/pipelines/pipeline_skyreels_video.py CHANGED
@@ -162,8 +162,8 @@ class SkyreelsVideoPipeline(HunyuanVideoPipeline):
162
  self,
163
  prompt: str,
164
  negative_prompt: str = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
165
- height: int = 720,
166
- width: int = 1280,
167
  num_frames: int = 129,
168
  num_inference_steps: int = 50,
169
  sigmas: List[float] = None,
@@ -240,7 +240,7 @@ class SkyreelsVideoPipeline(HunyuanVideoPipeline):
240
  batch_size = len(prompt)
241
  else:
242
  batch_size = prompt_embeds.shape[0]
243
- pipe.text_encoder.to("cuda")
244
 
245
  # 3. Encode input prompt
246
  (
@@ -338,8 +338,8 @@ class SkyreelsVideoPipeline(HunyuanVideoPipeline):
338
 
339
  if hasattr(self, "text_encoder_to_cpu"):
340
  self.text_encoder_to_cpu()
341
- pipe.text_encoder.to("cpu")
342
- pipe.vae.to("cpu")
343
  torch.cuda.empty_cache()
344
 
345
  with self.progress_bar(total=num_inference_steps) as progress_bar:
@@ -414,7 +414,7 @@ class SkyreelsVideoPipeline(HunyuanVideoPipeline):
414
  progress_bar.update()
415
 
416
  if not output_type == "latent":
417
- pipe.vae.to("cuda")
418
  latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
419
  video = self.vae.decode(latents, return_dict=False)[0]
420
  video = self.video_processor.postprocess_video(video, output_type=output_type)
 
162
  self,
163
  prompt: str,
164
  negative_prompt: str = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
165
+ height: int = 512,
166
+ width: int = 512,
167
  num_frames: int = 129,
168
  num_inference_steps: int = 50,
169
  sigmas: List[float] = None,
 
240
  batch_size = len(prompt)
241
  else:
242
  batch_size = prompt_embeds.shape[0]
243
+ self.text_encoder.to("cuda")
244
 
245
  # 3. Encode input prompt
246
  (
 
338
 
339
  if hasattr(self, "text_encoder_to_cpu"):
340
  self.text_encoder_to_cpu()
341
+ self.text_encoder.to("cpu")
342
+ self.vae.to("cpu")
343
  torch.cuda.empty_cache()
344
 
345
  with self.progress_bar(total=num_inference_steps) as progress_bar:
 
414
  progress_bar.update()
415
 
416
  if not output_type == "latent":
417
+ self.vae.to("cuda")
418
  latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
419
  video = self.vae.decode(latents, return_dict=False)[0]
420
  video = self.video_processor.postprocess_video(video, output_type=output_type)