whisper-small-hi / README.md
sp03's picture
End of training
db3a6f7 verified
metadata
library_name: transformers
language:
  - ta
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - sp03/tamil
metrics:
  - wer
model-index:
  - name: Whisper Small ta - Sp03
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: sp03/tamil
          config: default
          split: None
          args: 'config: ta, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 100

Whisper Small ta - Sp03

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6056
  • Wer: 100.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.4066 1.0 4 9.3832 100.0
21.3162 2.0 8 21.2056 100.0
11.2822 3.0 12 7.6851 100.0
6.0345 4.0 16 4.8468 100.0
3.8909 5.0 20 3.6056 100.0

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0