soumya13/GPT2_CleanDesc_MAKE_v1.5
This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0052
- Validation Loss: 0.0002
- Train Accuracy: 1.0
- Epoch: 24
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7600, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
4.0208 | 1.7346 | 0.3590 | 0 |
1.5028 | 0.9649 | 0.6923 | 1 |
0.8469 | 0.4756 | 0.9231 | 2 |
0.4664 | 0.1764 | 0.9231 | 3 |
0.2632 | 0.0836 | 0.9744 | 4 |
0.1579 | 0.0488 | 0.9744 | 5 |
0.1298 | 0.0250 | 1.0 | 6 |
0.0962 | 0.0136 | 1.0 | 7 |
0.0498 | 0.0041 | 1.0 | 8 |
0.0520 | 0.0022 | 1.0 | 9 |
0.0418 | 0.0016 | 1.0 | 10 |
0.0403 | 0.0013 | 1.0 | 11 |
0.0281 | 0.0009 | 1.0 | 12 |
0.0236 | 0.0008 | 1.0 | 13 |
0.0150 | 0.0008 | 1.0 | 14 |
0.0173 | 0.0007 | 1.0 | 15 |
0.0160 | 0.0005 | 1.0 | 16 |
0.0302 | 0.0004 | 1.0 | 17 |
0.0250 | 0.0003 | 1.0 | 18 |
0.0069 | 0.0003 | 1.0 | 19 |
0.0241 | 0.0003 | 1.0 | 20 |
0.0100 | 0.0003 | 1.0 | 21 |
0.0114 | 0.0002 | 1.0 | 22 |
0.0172 | 0.0002 | 1.0 | 23 |
0.0052 | 0.0002 | 1.0 | 24 |
Framework versions
- Transformers 4.28.1
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.