File size: 1,810 Bytes
7ba5964
 
 
 
 
 
 
 
 
 
 
 
a15de65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455d9e2
 
 
 
 
 
 
 
 
 
 
 
a15de65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64f6d0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
datasets:
- microsoft/cats_vs_dogs
language:
- en
metrics:
- accuracy
- f1
- recall
- precision
pipeline_tag: image-classification
---

---
language: en
tags:
- pytorch
- image-classification
- cats-vs-dogs
- computer-vision
datasets:
- microsoft/cats_vs_dogs
model-index:
- name: Dogs vs Cats Classifier
 results:
 - task:
     type: image-classification
     name: Image Classification
   metrics:
     - type: accuracy
       value: 93.25 
       name: Validation Accuracy
     - type: roc_auc
       value: 0.9942
       name: ROC AUC
     - type: precision
       value: 0.9769
       name: Precision
     - type: recall
       value: 0.9615
       name: Recall
     - type: f1
       value: 0.9691
       name: F1-Score

license: mit
---

# Dogs vs Cats Classifier

This model classifies images as either cats or dogs using a Convolutional Neural Network (CNN) architecture.

## Model description

Architecture:
- 4 convolutional blocks (Conv2D β†’ ReLU β†’ BatchNorm β†’ MaxPool)
- Feature channels: 3β†’64β†’128β†’256β†’512
- Global average pooling
- Fully connected layers: 512β†’256β†’1
- Binary classification output

## Training

- Dataset: microsoft/cats_vs_dogs
- Training/Validation split: 80/20
- Input size: 224x224 RGB images
- Trained for 10 epochs
- Best validation accuracy: 93.25%

## Intended uses

- Image classification between cats and dogs
- Transfer learning base for similar pet/animal classification tasks

## Limitations

- Only trained on cats and dogs
- May not perform well on:
 - Low quality/blurry images
 - Unusual angles/poses
 - Multiple animals in one image

## Input

RGB images resized to 224x224 pixels, normalized using ImageNet statistics:
- mean=[0.485, 0.456, 0.406]
- std=[0.229, 0.224, 0.225]


khouya abd elhamid rak bacha bla mona9acha