soufyane commited on
Commit
a15de65
Β·
verified Β·
1 Parent(s): 7ba5964

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -1
README.md CHANGED
@@ -10,4 +10,67 @@ metrics:
10
  - recall
11
  - precision
12
  pipeline_tag: image-classification
13
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  - recall
11
  - precision
12
  pipeline_tag: image-classification
13
+ ---
14
+
15
+ ---
16
+ language: en
17
+ tags:
18
+ - pytorch
19
+ - image-classification
20
+ - cats-vs-dogs
21
+ - computer-vision
22
+ datasets:
23
+ - microsoft/cats_vs_dogs
24
+ model-index:
25
+ - name: Dogs vs Cats Classifier
26
+ results:
27
+ - task:
28
+ type: image-classification
29
+ name: Image Classification
30
+ metrics:
31
+ - type: accuracy
32
+ value: 93.25
33
+ name: Validation Accuracy
34
+
35
+ license: mit
36
+ ---
37
+
38
+ # Dogs vs Cats Classifier
39
+
40
+ This model classifies images as either cats or dogs using a Convolutional Neural Network (CNN) architecture.
41
+
42
+ ## Model description
43
+
44
+ Architecture:
45
+ - 4 convolutional blocks (Conv2D β†’ ReLU β†’ BatchNorm β†’ MaxPool)
46
+ - Feature channels: 3β†’64β†’128β†’256β†’512
47
+ - Global average pooling
48
+ - Fully connected layers: 512β†’256β†’1
49
+ - Binary classification output
50
+
51
+ ## Training
52
+
53
+ - Dataset: microsoft/cats_vs_dogs
54
+ - Training/Validation split: 80/20
55
+ - Input size: 224x224 RGB images
56
+ - Trained for 10 epochs
57
+ - Best validation accuracy: 93.25%
58
+
59
+ ## Intended uses
60
+
61
+ - Image classification between cats and dogs
62
+ - Transfer learning base for similar pet/animal classification tasks
63
+
64
+ ## Limitations
65
+
66
+ - Only trained on cats and dogs
67
+ - May not perform well on:
68
+ - Low quality/blurry images
69
+ - Unusual angles/poses
70
+ - Multiple animals in one image
71
+
72
+ ## Input
73
+
74
+ RGB images resized to 224x224 pixels, normalized using ImageNet statistics:
75
+ - mean=[0.485, 0.456, 0.406]
76
+ - std=[0.229, 0.224, 0.225]