Update README.md
Browse files
README.md
CHANGED
@@ -10,4 +10,67 @@ metrics:
|
|
10 |
- recall
|
11 |
- precision
|
12 |
pipeline_tag: image-classification
|
13 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
- recall
|
11 |
- precision
|
12 |
pipeline_tag: image-classification
|
13 |
+
---
|
14 |
+
|
15 |
+
---
|
16 |
+
language: en
|
17 |
+
tags:
|
18 |
+
- pytorch
|
19 |
+
- image-classification
|
20 |
+
- cats-vs-dogs
|
21 |
+
- computer-vision
|
22 |
+
datasets:
|
23 |
+
- microsoft/cats_vs_dogs
|
24 |
+
model-index:
|
25 |
+
- name: Dogs vs Cats Classifier
|
26 |
+
results:
|
27 |
+
- task:
|
28 |
+
type: image-classification
|
29 |
+
name: Image Classification
|
30 |
+
metrics:
|
31 |
+
- type: accuracy
|
32 |
+
value: 93.25
|
33 |
+
name: Validation Accuracy
|
34 |
+
|
35 |
+
license: mit
|
36 |
+
---
|
37 |
+
|
38 |
+
# Dogs vs Cats Classifier
|
39 |
+
|
40 |
+
This model classifies images as either cats or dogs using a Convolutional Neural Network (CNN) architecture.
|
41 |
+
|
42 |
+
## Model description
|
43 |
+
|
44 |
+
Architecture:
|
45 |
+
- 4 convolutional blocks (Conv2D β ReLU β BatchNorm β MaxPool)
|
46 |
+
- Feature channels: 3β64β128β256β512
|
47 |
+
- Global average pooling
|
48 |
+
- Fully connected layers: 512β256β1
|
49 |
+
- Binary classification output
|
50 |
+
|
51 |
+
## Training
|
52 |
+
|
53 |
+
- Dataset: microsoft/cats_vs_dogs
|
54 |
+
- Training/Validation split: 80/20
|
55 |
+
- Input size: 224x224 RGB images
|
56 |
+
- Trained for 10 epochs
|
57 |
+
- Best validation accuracy: 93.25%
|
58 |
+
|
59 |
+
## Intended uses
|
60 |
+
|
61 |
+
- Image classification between cats and dogs
|
62 |
+
- Transfer learning base for similar pet/animal classification tasks
|
63 |
+
|
64 |
+
## Limitations
|
65 |
+
|
66 |
+
- Only trained on cats and dogs
|
67 |
+
- May not perform well on:
|
68 |
+
- Low quality/blurry images
|
69 |
+
- Unusual angles/poses
|
70 |
+
- Multiple animals in one image
|
71 |
+
|
72 |
+
## Input
|
73 |
+
|
74 |
+
RGB images resized to 224x224 pixels, normalized using ImageNet statistics:
|
75 |
+
- mean=[0.485, 0.456, 0.406]
|
76 |
+
- std=[0.229, 0.224, 0.225]
|