Edit model card

μ£Όμ‹νšŒμ‚¬ ν•œμ†”λ°μ½”μ˜ 곡개 도메인 데이터셋을 토큰화 및 ν•™μŠ΅ν•˜μ˜€μŠ΅λ‹ˆλ‹€.

base model : mistralai/Mistral-7B-v0.1

Dataset : ν•œμ†”λ°μ½” 도메인 데이터셋

DPo dataset : maywellλ‹˜κ»˜μ„œ μ—…λ‘œλ“œ μ£Όμ‹  ko_Ultrafeedback_binarized을 μ‚¬μš©ν•˜μ˜€μŠ΅λ‹ˆλ‹€.

ν•™μŠ΅ νŒŒλΌλ―Έν„°

num_train_epochs=3
per_device_train_batch_size=1
gradient_accumulation_steps=4
gradient_checkpointing=True
learning_rate=5e-5
lr_scheduler_type="linear"
max_steps=200
save_strategy="no"
logging_steps=1
output_dir=new_model
optim="paged_adamw_32bit"
warmup_steps=100
fp16=True

μ‹€ν–‰ 예제

from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import TextStreamer, GenerationConfig

model_name='sosoai/hansoldeco-mistral-dpo-v1'
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
streamer = TextStreamer(tokenizer)

def gen(x):
    generation_config = GenerationConfig(
        temperature=0.1,
        top_p=0.8,
        top_k=100,
        max_new_tokens=256,
        early_stopping=True,
        do_sample=True,
        repetition_penalty=1.2,
    )
    q = f"[INST]{x} [/INST]"
    gened = model.generate(
        **tokenizer(
            q,
            return_tensors='pt',
            return_token_type_ids=False
        ).to('cuda'),
        generation_config=generation_config,
        pad_token_id=tokenizer.eos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        streamer=streamer,
    )
    result_str = tokenizer.decode(gened[0])

    start_tag = f"\n\n### Response: "
    start_index = result_str.find(start_tag)

    if start_index != -1:
        result_str = result_str[start_index + len(start_tag):].strip()
    return result_str

print(gen('λ§ˆκ°ν•˜μžλŠ” μ–΄λ–€ μ’…λ₯˜κ°€ μžˆλ‚˜μš”?'))
Downloads last month
24
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.