sonicc commited on
Commit
0977e5b
·
verified ·
1 Parent(s): c46a560

Upload MHTabbyGPT2

Browse files
Files changed (2) hide show
  1. README.md +177 -44
  2. model.safetensors +2 -2
README.md CHANGED
@@ -1,66 +1,199 @@
1
  ---
2
  library_name: transformers
3
- tags:
4
- - MOE
5
- - GPT-2
6
- - tabular
7
- - generative
8
- - causalLM
9
- pipeline_tag: tabular-regression
10
  ---
11
 
12
- # Tabby Model Card
13
 
14
- Tabby is a post-training architecture modification for Transformer-based large language models,
15
- enabling their use for **tabular dataset synthesis**. This specific demo checkpoint is based on [DistilGPT-2](https://huggingface.co/distilbert/distilgpt2)
16
- and fine-tuned on the [UCI Diabetes dataset](https://www.openml.org/search?type=data&sort=version&status=any&order=asc&exact_name=diabetes&id=37),
17
- using our novel Plain training method,
18
- as an example of Tabby’s tabular synthesis capabilities.
19
- Tabby enhances transformer-based LLMs by incorporating **Mixture of Experts (MoE) layers**,
20
- allowing for better modeling of structured data.
21
- For more details, check out our paper and GitHub repo!
22
 
23
 
24
- - **Developed by:** University of Wisconsin-Madison
25
- - **Shared by:** Sonia Cromp et al.
26
- - **Model type:** MoE-enhanced GPT-2-based causal language model for tabular data
27
- - **License:** MIT
28
- - **Finetuned from model:** [`distilgpt2`](https://huggingface.co/distilbert/distilgpt2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ## Uses
 
 
 
31
  ### Direct Use
32
 
33
- This Tabby checkpoint can be used for:
34
- - High-fidelity synthesis of diabetes patients based on the [UCI Diabetes dataset](https://www.openml.org/search?type=data&sort=version&status=any&order=asc&exact_name=diabetes&id=37).
35
- - Data augmentation for training machine learning models on the UCI Diabetes dataset.
36
- - Comparison with other tabular synthesis approaches.
37
 
38
- ### Downstream Use
39
 
40
- - Further fine-tuning on other structured datasets (e.g., financial records, medical records, or survey data).
41
- - Generating synthetic tabular data for privacy-preserving machine learning.
 
 
 
 
 
 
 
 
 
42
 
43
  ## Bias, Risks, and Limitations
44
 
45
- This Tabby checkpoint inherits biases from the GPT-2 architecture and the UCI Diabetes dataset used for fine-tuning.
46
- Considerations include those common to all generative models, such as:
47
- - Bias in synthetic data feature distributions, particularly those that may reflect real-world disparities in the dataset.
48
- - Potential hallucinations that do not perfectly match real-world distributions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
- ## Citation
51
 
52
- If you use Tabby, please cite:
53
 
54
- ```bibtex
55
- @article{cromp2025tabby,
56
- title={Tabby: Tabular Data Synthesis with Language Models},
57
- author={Sonia Cromp, Satya Sai Srinath Namburi GNVV, Mohammed Alkhudhayri, Catherine Cao, Samuel Guo, Nicholas Roberts, Frederic Sala},
58
- journal={arXiv preprint arXiv:2405.01147},
59
- year={2025},
60
- url={https://arxiv.org/abs/2405.01147}
61
- }
62
- ```
63
 
64
  ## Model Card Contact
65
 
66
- For questions or collaborations, please reach out to [Sonia Cromp](https://socromp.github.io) at [[email protected]].
 
1
  ---
2
  library_name: transformers
3
+ tags: []
 
 
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
9
 
10
 
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
  ### Direct Use
41
 
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
+ [More Information Needed]
45
 
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
 
191
+ [More Information Needed]
192
 
193
+ ## Model Card Authors [optional]
194
 
195
+ [More Information Needed]
 
 
 
 
 
 
 
 
196
 
197
  ## Model Card Contact
198
 
199
+ [More Information Needed]
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:be6a799497be636baeb8b7215fa49d6c1cb65e08eac62c886bdec964096dc522
3
- size 1717226008
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae2851f9fa2ebf60cb6b85636dcf3cd4a416fd59c868f515ed041a48963473d1
3
+ size 1717226072